Miles Alistair, Iqbal Zamin, Vauterin Paul, Pearson Richard, Campino Susana, Theron Michel, Gould Kelda, Mead Daniel, Drury Eleanor, O'Brien John, Ruano Rubio Valentin, MacInnis Bronwyn, Mwangi Jonathan, Samarakoon Upeka, Ranford-Cartwright Lisa, Ferdig Michael, Hayton Karen, Su Xin-Zhuan, Wellems Thomas, Rayner Julian, McVean Gil, Kwiatkowski Dominic
MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom;
Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom;
Genome Res. 2016 Sep;26(9):1288-99. doi: 10.1101/gr.203711.115. Epub 2016 Aug 16.
The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired.
恶性疟原虫具有很强的进化适应能力,能够逃避宿主免疫并产生耐药性。目前对寄生虫进化的理解受到以下事实的阻碍:基因组的很大一部分要么高度重复,要么高度可变,因此难以使用短读长测序技术进行分析。在这里,我们描述了一份关于遗传杂交亲本及其后代的深度测序数据资源,这使我们能够利用孟德尔错误率作为基因型准确性的指标,首次对单核苷酸多态性(SNP)、插入缺失(indel)和复杂多态性进行全基因组综合分析。这些数据表明,插入缺失异常丰富,比SNP更常见,因此是核心基因组内多态性的主要模式。我们利用高密度的SNP和插入缺失标记来分析减数分裂重组模式,证实了交叉事件的高发生率,并首次估计了非交叉事件的发生率和转换片段的长度。我们在与耐药性相关的拷贝数变异中观察到了几例减数分裂重组,证明了一种机制,通过该机制与耐药性突变相关的适应性成本可以得到补偿,并且可以获得更大的表型可塑性。