Cheng Ji, Pullenayegum Eleanor, Marshall John K, Iorio Alfonso, Thabane Lehana
Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.
Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada The Hospital for Sick Children, Toronto, Ontario, Canada.
BMJ Open. 2016 Aug 16;6(8):e010983. doi: 10.1136/bmjopen-2015-010983.
There is no consensus on whether studies with no observed events in the treatment and control arms, the so-called both-armed zero-event studies, should be included in a meta-analysis of randomised controlled trials (RCTs). Current analytic approaches handled them differently depending on the choice of effect measures and authors' discretion. Our objective is to evaluate the impact of including or excluding both-armed zero-event (BA0E) studies in meta-analysis of RCTs with rare outcome events through a simulation study.
We simulated 2500 data sets for different scenarios varying the parameters of baseline event rate, treatment effect and number of patients in each trial, and between-study variance. We evaluated the performance of commonly used pooling methods in classical meta-analysis-namely, Peto, Mantel-Haenszel with fixed-effects and random-effects models, and inverse variance method with fixed-effects and random-effects models-using bias, root mean square error, length of 95% CI and coverage.
The overall performance of the approaches of including or excluding BA0E studies in meta-analysis varied according to the magnitude of true treatment effect. Including BA0E studies introduced very little bias, decreased mean square error, narrowed the 95% CI and increased the coverage when no true treatment effect existed. However, when a true treatment effect existed, the estimates from the approach of excluding BA0E studies led to smaller bias than including them. Among all evaluated methods, the Peto method excluding BA0E studies gave the least biased results when a true treatment effect existed.
We recommend including BA0E studies when treatment effects are unlikely, but excluding them when there is a decisive treatment effect. Providing results of including and excluding BA0E studies to assess the robustness of the pooled estimated effect is a sensible way to communicate the results of a meta-analysis when the treatment effects are unclear.
对于在治疗组和对照组中均未观察到事件的研究,即所谓的双臂零事件研究,是否应纳入随机对照试验(RCT)的荟萃分析,目前尚无共识。当前的分析方法根据效应量的选择和作者的判断而有所不同。我们的目的是通过模拟研究评估在罕见结局事件的RCT荟萃分析中纳入或排除双臂零事件(BA0E)研究的影响。
我们针对不同场景模拟了2500个数据集,这些场景涉及基线事件率、治疗效果、每个试验中的患者数量以及研究间方差等参数。我们使用偏差、均方根误差、95%置信区间长度和覆盖率,评估了经典荟萃分析中常用的合并方法的性能,即Peto法、固定效应和随机效应模型的Mantel-Haenszel法以及固定效应和随机效应模型的逆方差法。
在荟萃分析中纳入或排除BA0E研究的方法的总体性能因真实治疗效果的大小而异。当不存在真实治疗效果时,纳入BA0E研究产生的偏差非常小,降低了均方误差,缩小了95%置信区间并提高了覆盖率。然而,当存在真实治疗效果时,排除BA0E研究的方法得出的估计偏差比纳入它们时更小。在所有评估方法中,当存在真实治疗效果时,排除BA0E研究的Peto法产生的偏差最小。
我们建议在治疗效果不太可能存在时纳入BA0E研究,但在存在决定性治疗效果时排除它们。当治疗效果不明确时,提供纳入和排除BA0E研究的结果以评估合并估计效应的稳健性是传达荟萃分析结果的明智方式。