Suppr超能文献

基于个体参与者数据的单阶段Meta分析方法在三分法规则下对二元不良事件的应用:一项模拟研究

The use of one-stage meta-analytic method based on individual participant data for binary adverse events under the rule of three: a simulation study.

作者信息

Cheng Liang-Liang, Ju Ke, Cai Rui-Lie, Xu Chang

机构信息

West China School of Public Health, Sichuan University, Chengdu, China.

West China Research Center for Rural Health Development, Sichuan University, Chengdu, China.

出版信息

PeerJ. 2019 Jan 23;7:e6295. doi: 10.7717/peerj.6295. eCollection 2019.

Abstract

OBJECTIVE

In evidence synthesis practice, dealing with binary rare adverse events (AEs) is a challenging problem. The pooled estimates for rare AEs through traditional inverse variance (IV), Mantel-Haenszel (MH), and Yusuf-Peto (Peto) methods are suboptimal, as the biases tend to be large. We proposed the "one-stage" approach based on multilevel variance component logistic regression (MVCL) to handle this problem.

METHODS

We used simulations to generate trials of individual participant data (IPD) with a series of predefined parameters. We compared the performance of the MVCL "one-stage" approach and the five classical methods (fixed/random effect IV, fixed/random effect MH, and Peto) for rare binary AEs under different scenarios, which included different sample size setting rules, effect sizes, between-study heterogeneity, and numbers of studies in each meta-analysis. The percentage bias, mean square error (MSE), coverage probability, and average width of the 95% confidence intervals were used as performance indicators.

RESULTS

We set 52 scenarios and each scenario was simulated 1,000 times. Under the rule of three (a sample size setting rule to ensure a 95% chance of detecting at least one AE case), the MVCL "one-stage" IPD method had the lowest percentage bias in most of the situations and the bias remained at a very low level (<10%), when compared to IV, MH, and Peto methods. In addition, the MVCL "one-stage" IPD method generally had the lowest MSE and the narrowest average width of 95% confidence intervals. However, it did not show better coverage probability over the other five methods.

CONCLUSIONS

The MVCL "one-stage" IPD meta-analysis is a useful method to handle binary rare events and superior compared to traditional methods under the rule of three. Further meta-analyses may take account of the "one-stage" IPD method for pooling rare event data.

摘要

目的

在证据综合实践中,处理二元罕见不良事件(AE)是一个具有挑战性的问题。通过传统的逆方差(IV)、Mantel-Haenszel(MH)和Yusuf-Peto(Peto)方法对罕见AE进行合并估计并不理想,因为偏差往往较大。我们提出了基于多水平方差成分逻辑回归(MVCL)的“单阶段”方法来处理这个问题。

方法

我们使用模拟生成具有一系列预定义参数的个体参与者数据(IPD)试验。我们比较了MVCL“单阶段”方法和五种经典方法(固定/随机效应IV、固定/随机效应MH和Peto)在不同场景下对罕见二元AE的性能,这些场景包括不同的样本量设置规则、效应大小、研究间异质性以及每个荟萃分析中的研究数量。百分比偏差、均方误差(MSE)、覆盖概率和95%置信区间的平均宽度用作性能指标。

结果

我们设置了52个场景,每个场景模拟1000次。在“三法则”(一种样本量设置规则,以确保有95%的机会检测到至少一例AE病例)下,与IV、MH和Peto方法相比,MVCL“单阶段”IPD方法在大多数情况下具有最低的百分比偏差,并且偏差保持在非常低的水平(<10%)。此外,MVCL“单阶段”IPD方法通常具有最低的MSE和最窄的95%置信区间平均宽度。然而,它在覆盖概率方面并不比其他五种方法表现更好。

结论

MVCL“单阶段”IPD荟萃分析是处理二元罕见事件的一种有用方法,在“三法则”下优于传统方法。进一步的荟萃分析可能会考虑使用“单阶段”IPD方法来汇总罕见事件数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验