Department of Life Sciences, The Natural History Museum, London, United Kingdom
Department of Life Sciences, The Natural History Museum, London, United Kingdom.
Mol Biol Evol. 2016 Oct;33(10):2483-95. doi: 10.1093/molbev/msw148. Epub 2016 Aug 16.
Much of what is known about the molecular evolution of vertebrate vision comes from studies of mammals, birds and fish. Reptiles (especially snakes) have barely been sampled in previous studies despite their exceptional diversity of retinal photoreceptor complements. Here, we analyze opsin gene sequences and ocular media transmission for up to 69 species to investigate snake visual evolution. Most snakes express three visual opsin genes (rh1, sws1, and lws). These opsin genes (especially rh1 and sws1) have undergone much evolutionary change, including modifications of amino acid residues at sites of known importance for spectral tuning, with several tuning site combinations unknown elsewhere among vertebrates. These changes are particularly common among dipsadine and colubrine "higher" snakes. All three opsin genes are inferred to be under purifying selection, though dN/dS varies with respect to some lineages, ecologies, and retinal anatomy. Positive selection was inferred at multiple sites in all three opsins, these being concentrated in transmembrane domains and thus likely to have a substantial effect on spectral tuning and other aspects of opsin function. Snake lenses vary substantially in their spectral transmission. Snakes active at night and some of those active by day have very transmissive lenses, whereas some primarily diurnal species cut out shorter wavelengths (including UVA). In terms of retinal anatomy, lens transmission, visual pigment spectral tuning and opsin gene evolution the visual system of snakes is exceptionally diverse compared with all other extant tetrapod orders.
脊椎动物视觉分子进化的大部分知识来自对哺乳动物、鸟类和鱼类的研究。尽管爬行动物(尤其是蛇类)的视网膜光感受器组成具有特殊的多样性,但在之前的研究中,它们几乎没有被采样。在这里,我们分析了多达 69 种蛇类的视蛋白基因序列和眼部介质传递,以研究蛇类的视觉进化。大多数蛇类表达三种视觉视蛋白基因(rh1、sws1 和 lws)。这些视蛋白基因(尤其是 rh1 和 sws1)经历了大量的进化变化,包括对已知对光谱调谐重要的氨基酸残基的修饰,其中一些调谐位点组合在其他脊椎动物中是未知的。这些变化在蟒科和游蛇科的“高等”蛇类中尤为常见。尽管在一些谱系、生态和视网膜解剖方面,dN/dS 存在差异,但所有三种视蛋白基因都被推断为受到纯化选择的影响。在所有三种视蛋白中都推断出正选择,这些选择集中在跨膜结构域,因此可能对视蛋白功能的光谱调谐和其他方面产生重大影响。蛇类的晶状体在光谱透过率上有很大的差异。夜间活动和一些日间活动的蛇类的晶状体非常透明,而一些主要在白天活动的物种则过滤掉较短的波长(包括 UVA)。就视网膜解剖、晶状体传输、视觉色素光谱调谐和视蛋白基因进化而言,与所有其他现存的四足动物目相比,蛇类的视觉系统具有非凡的多样性。