Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.
College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
Mol Biol Evol. 2023 Apr 4;40(4). doi: 10.1093/molbev/msad063.
Photic niche shifts of mammals are associated with changing visual capabilities, primarily mediated by three visual pigments, two (SWS1 and M/LWS) of them for color vision and rhodopsin (RH1) for dim-light vision. To further elucidate molecular mechanisms of mammalian visual adaptations to different light environments, a systematic study incorporating evolutionary analyses across diverse groups and in vitro assays have been carried out. Here, we collected gene sequences for the three opsins from 220 species covering all major mammalian clades. After screening for cone opsin gene losses, we estimated selective pressures on each of the three genes and compared the levels of selection experienced by species living in bright- and dim-light environments. SWS1 pigment is shown to experience accelerated evolution in species living in bright-light environments as has RH1 in aquatic cetaceans, indicating potential shifts for ecological adaptations. To further elucidate the functional mechanisms for these two pigments, we then carried out site-directed mutagenesis in representative taxa. For SWS1, violet and ultraviolet sensitivities in the pika and mouse are mainly affected by substitutions at the critical sites 86 and 93, which have strong epistatic interaction. For RH1, the phenotypic difference between the sperm whale and bovine sequences is largely contributed by a substitution at site 195, which could be critical for dim-light sensation for deep-diving species. Different evolutionary patterns for the visual pigments have been identified in mammals, which correspond to photic niches, although additional phenotypic assays are still required to fully explain the functional mechanisms.
哺乳动物的光生态位转移与视觉能力的变化有关,主要由三种视觉色素介导,其中两种(SWS1 和 M/LWS)用于色觉,视紫红质(RH1)用于暗光视觉。为了进一步阐明哺乳动物视觉适应不同光照环境的分子机制,我们进行了一项系统研究,包括对不同群体的进化分析和体外测定。在这里,我们从覆盖所有主要哺乳动物类群的 220 个物种中收集了三种视蛋白的基因序列。在筛选视锥细胞视蛋白基因缺失后,我们估计了这三种基因的选择压力,并比较了生活在明亮和暗光环境中的物种所经历的选择水平。SWS1 色素在生活在明亮环境中的物种中经历了加速进化,就像水生鲸类中的 RH1 一样,表明可能发生了生态适应的转变。为了进一步阐明这两种色素的功能机制,我们随后在有代表性的分类群中进行了定点突变。对于 SWS1,在兔和鼠中,紫光和紫外线的敏感性主要受关键位点 86 和 93 的取代影响,这些取代具有强烈的上位性相互作用。对于 RH1,抹香鲸和牛序列之间的表型差异主要归因于位点 195 的取代,这对于深海潜水物种的暗光感觉可能是关键的。尽管还需要进行额外的表型测定来完全解释功能机制,但哺乳动物的视觉色素已经呈现出不同的进化模式,这与光生态位相对应。