Suppr超能文献

唐氏综合征的小鼠模型:基因组成与影响

Mouse models of Down syndrome: gene content and consequences.

作者信息

Gupta Meenal, Dhanasekaran A Ranjitha, Gardiner Katheleen J

机构信息

Department of Pediatrics, Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA.

Department of Biochemistry and Molecular Biology, University of Colorado Denver School of Medicine, Aurora, CO, USA.

出版信息

Mamm Genome. 2016 Dec;27(11-12):538-555. doi: 10.1007/s00335-016-9661-8. Epub 2016 Aug 18.

Abstract

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is challenging to model in mice. Not only is it a contiguous gene syndrome spanning 35 Mb of the long arm of Hsa21, but orthologs of Hsa21 genes map to segments of three mouse chromosomes, Mmu16, Mmu17, and Mmu10. The Ts65Dn was the first viable segmental trisomy mouse model for DS; it is a partial trisomy currently popular in preclinical evaluations of drugs for cognition in DS. Limitations of the Ts65Dn are as follows: (i) it is trisomic for 125 human protein-coding orthologs, but only 90 of these are Hsa21 orthologs and (ii) it lacks trisomy for ~75 Hsa21 orthologs. In recent years, several additional mouse models of DS have been generated, each trisomic for a different subset of Hsa21 genes or their orthologs. To best exploit these models and interpret the results obtained with them, prior to proposing clinical trials, an understanding of their trisomic gene content, relative to full trisomy 21, is necessary. Here we first review the functional information on Hsa21 protein-coding genes and the more recent annotation of a large number of functional RNA genes. We then discuss the conservation and genomic distribution of Hsa21 orthologs in the mouse genome and the distribution of mouse-specific genes. Lastly, we consider the strengths and weaknesses of mouse models of DS based on the number and nature of the Hsa21 orthologs that are, and are not, trisomic in each, and discuss their validity for use in preclinical evaluations of drug responses.

摘要

唐氏综合征(DS),即人类21号染色体(Hsa21)三体,在小鼠中建模具有挑战性。它不仅是一种跨越Hsa21长臂35 Mb的连续基因综合征,而且Hsa21基因的直系同源基因定位于三条小鼠染色体(Mmu16、Mmu17和Mmu10)的片段上。Ts65Dn是首个用于DS的可行的节段性三体小鼠模型;它是一种部分三体,目前在DS认知药物的临床前评估中很常用。Ts65Dn的局限性如下:(i)它对于125个人类蛋白质编码直系同源基因是三体,但其中只有90个是Hsa21直系同源基因;(ii)它缺少约75个Hsa21直系同源基因的三体。近年来,又产生了几种额外的DS小鼠模型,每种模型对于Hsa21基因或其直系同源基因的不同子集是三体。为了最好地利用这些模型并解释从中获得的结果,在提议进行临床试验之前,有必要了解它们相对于21号染色体完全三体的三体基因内容。在这里,我们首先回顾关于Hsa21蛋白质编码基因的功能信息以及大量功能性RNA基因的最新注释。然后,我们讨论Hsa直系同源基因在小鼠基因组中的保守性和基因组分布以及小鼠特异性基因的分布。最后,我们根据每种模型中三体和非三体的Hsa21直系同源基因的数量和性质,考虑DS小鼠模型的优缺点,并讨论它们在药物反应临床前评估中的有效性。

相似文献

1
Mouse models of Down syndrome: gene content and consequences.
Mamm Genome. 2016 Dec;27(11-12):538-555. doi: 10.1007/s00335-016-9661-8. Epub 2016 Aug 18.
2
The genetic background and application of Down syndrome mouse models.
Yi Chuan. 2018 Mar 20;40(3):207-217. doi: 10.16288/j.yczz.17-279.
3
The Impact of Mmu17 Non-Hsa21 Orthologous Genes in the Ts65Dn Mouse Model of Down Syndrome: The Gold Standard Refuted.
Biol Psychiatry. 2023 Jul 1;94(1):84-97. doi: 10.1016/j.biopsych.2023.02.012. Epub 2023 Mar 14.
4
Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome.
Blood. 2008 Jan 15;111(2):767-75. doi: 10.1182/blood-2007-04-085670. Epub 2007 Sep 27.
6
Gene expression from the aneuploid chromosome in a trisomy mouse model of down syndrome.
Genome Res. 2004 Jul;14(7):1268-74. doi: 10.1101/gr.2090904.
8
A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions.
Hum Mol Genet. 2010 Jul 15;19(14):2780-91. doi: 10.1093/hmg/ddq179. Epub 2010 May 4.
10
Mouse models of cognitive disorders in trisomy 21: a review.
Behav Genet. 2006 May;36(3):387-404. doi: 10.1007/s10519-006-9056-9. Epub 2006 Mar 8.

引用本文的文献

1
Unveiling unique expression patterns of D20S16 satellite DNA in human embryonic development.
Sci Rep. 2025 Jul 23;15(1):26770. doi: 10.1038/s41598-025-11753-w.
2
Single-cell transcriptomics reveal individual and cooperative effects of trisomy 21 and GATA1s on hematopoiesis.
Stem Cell Reports. 2025 Aug 12;20(8):102577. doi: 10.1016/j.stemcr.2025.102577. Epub 2025 Jul 17.
3
DYRK1A Up-Regulation Specifically Impairs a Presynaptic Form of Long-Term Potentiation.
Life (Basel). 2025 Jan 22;15(2):149. doi: 10.3390/life15020149.
4
Infantile Spasms in Pediatric Down Syndrome: Potential Mechanisms Driving Therapeutic Considerations.
Children (Basel). 2024 Dec 13;11(12):1513. doi: 10.3390/children11121513.
5
Lithium normalizes ASD-related neuronal, synaptic, and behavioral phenotypes in DYRK1A-knockin mice.
Mol Psychiatry. 2025 Jun;30(6):2584-2596. doi: 10.1038/s41380-024-02865-2. Epub 2024 Dec 5.
10
From understanding to action: Exploring molecular connections of Down syndrome to Alzheimer's disease for targeted therapeutic approach.
Alzheimers Dement (Amst). 2024 Apr 14;16(2):e12580. doi: 10.1002/dad2.12580. eCollection 2024 Apr-Jun.

本文引用的文献

1
Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome.
J Neurosci. 2016 Mar 9;36(10):2926-44. doi: 10.1523/JNEUROSCI.2513-15.2016.
2
Treating trisomies: Prenatal Down's syndrome therapies explored in mice.
Nat Med. 2016 Jan;22(1):6-7. doi: 10.1038/nm0116-6.
3
Uncovering the roles of long noncoding RNAs in neural development and glioma progression.
Neurosci Lett. 2016 Jun 20;625:70-9. doi: 10.1016/j.neulet.2015.12.025. Epub 2015 Dec 28.
4
Aging in Down Syndrome and the Development of Alzheimer's Disease Neuropathology.
Curr Alzheimer Res. 2016;13(1):18-29. doi: 10.2174/1567205012666151020114607.
5
Long non-coding RNA growth arrest-specific transcript 5 in tumor biology.
Oncol Lett. 2015 Oct;10(4):1953-1958. doi: 10.3892/ol.2015.3553. Epub 2015 Jul 30.
6
Discovery and characterization of smORF-encoded bioactive polypeptides.
Nat Chem Biol. 2015 Dec;11(12):909-16. doi: 10.1038/nchembio.1964.
7
Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome.
Biol Sex Differ. 2015 Nov 9;6:24. doi: 10.1186/s13293-015-0043-9. eCollection 2015.
8
Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.
Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. doi: 10.1093/nar/gkv1189. Epub 2015 Nov 8.
10
Pharmacological correction of excitation/inhibition imbalance in Down syndrome mouse models.
Front Behav Neurosci. 2015 Oct 20;9:267. doi: 10.3389/fnbeh.2015.00267. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验