Alldred Melissa J, Pidikiti Harshitha, Ibrahim Kryillos W, Lee Sang Han, Heguy Adriana, Hoffman Gabriel E, Mufson Elliott J, Stutzmann Grace E, Ginsberg Stephen D
Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.
Departments of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
J Alzheimers Dis. 2024;100(s1):S341-S362. doi: 10.3233/JAD-240622.
Individuals with Down syndrome (DS) have intellectual disability and develop Alzheimer's disease (AD) pathology during midlife, particularly in the hippocampal component of the medial temporal lobe memory circuit. However, molecular and cellular mechanisms underlying selective vulnerability of hippocampal CA1 neurons remains a major knowledge gap during DS/AD onset. This is compounded by evidence showing spatial (e.g., deep versus superficial) localization of pyramidal neurons (PNs) has profound effects on activity and innervation within the CA1 region.
We investigated whether there is a spatial profiling difference in CA1 PNs in an aged female DS/AD mouse model. We posit dysfunction may be dependent on spatial localization and innervation patterns within discrete CA1 subfields.
Laser capture microdissection was performed on trisomic CA1 PNs in an established mouse model of DS/AD compared to disomic controls, isolating the entire CA1 pyramidal neuron layer and sublayer microisolations of deep and superficial PNs from the distal CA1 (CA1a) region.
RNA sequencing and bioinformatic inquiry revealed dysregulation of CA1 PNs based on spatial location and innervation patterns. The entire CA1 region displayed the most differentially expressed genes (DEGs) in trisomic mice reflecting innate DS vulnerability, while trisomic CA1a deep PNs exhibited fewer but more physiologically relevant DEGs, as evidenced by bioinformatic inquiry.
CA1a deep neurons displayed numerous DEGs linked to cognitive functions whereas CA1a superficial neurons, with approximately equal numbers of DEGs, were not linked to pathways of dysregulation, suggesting the spatial location of vulnerable CA1 PNs plays an important role in circuit dissolution.
唐氏综合征(DS)患者存在智力障碍,并在中年时出现阿尔茨海默病(AD)病理特征,尤其是在内侧颞叶记忆回路的海马部分。然而,在DS/AD发病过程中,海马CA1神经元选择性易损性的分子和细胞机制仍然存在重大知识空白。有证据表明锥体细胞(PNs)的空间定位(如深层与浅层)对CA1区域内的活性和神经支配有深远影响,这使情况更加复杂。
我们研究了在老年雌性DS/AD小鼠模型中,CA1区PNs是否存在空间分布差异。我们推测功能障碍可能取决于离散CA1亚区内的空间定位和神经支配模式。
在已建立的DS/AD小鼠模型中,对三体CA1 PNs进行激光捕获显微切割,并与二体对照进行比较,分离出整个CA1锥体细胞层以及从远端CA1(CA1a)区域分离出的深层和浅层PNs的亚层微分离物。
RNA测序和生物信息学探究显示,基于空间位置和神经支配模式,CA1 PNs存在失调。整个CA1区域在三体小鼠中显示出差异表达基因(DEGs)最多,反映了先天性DS易感性,而三体CA1a深层PNs表现出较少但更具生理相关性的DEGs,生物信息学探究证明了这一点。
CA1a深层神经元显示出许多与认知功能相关的DEGs,而CA1a浅层神经元虽然DEGs数量大致相同,但与失调途径无关,这表明易损CA1 PNs的空间位置在回路解体中起重要作用。