Yang Tongren, Yao Sufei, Hao Lin, Zhao Yuanyuan, Lu Wenjing, Xiao Kai
College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China.
Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China.
Plant Cell Rep. 2016 Nov;35(11):2309-2323. doi: 10.1007/s00299-016-2036-5. Epub 2016 Aug 19.
Wheat bHLH family gene TabHLH1 is responsive to drought and salt stresses, and it acts as one crucial regulator in mediating tolerance to aforementioned stresses largely through an ABA-associated pathway. Osmotic stresses are adverse factors for plant growth and crop productivity. In this study, we characterized TabHLH1, a gene encoding wheat bHLH-type transcription factor (TF) protein, in mediating plant adaptation to osmotic stresses. TabHLH1 protein contains a conserved basic-helix-loop-helix (bHLH) domain shared by its plant counterparts. Upon PEG-simulated drought stress, salt stress, and exogenous abscisic acid (ABA), the TabHLH1 transcripts in roots and leaves were induced. Under PEG-simulated drought stress and salt stress treatments, the tobacco seedlings with TabHLH1 overexpression exhibited improved growth and osmotic stress-associated traits, showing increased biomass and reduced leaf water loss rate (WLR) relative to wild type (WT). The transgenic lines also possessed promoted stomata closure under drought stress, salt stress, and exogenous ABA and increased proline and soluble sugar contents and reduced hydrogen peroxide (HO) amount under osmotic stress conditions, indicating that TabHLH1-mediated osmolyte accumulation and cellular ROS homeostasis contributed to the drought stress and salt stress tolerance. NtPYL12 and NtSAPK2;1, the genes encoding ABA receptor and SnRK2 family kinase, respectively, showed up-regulated expression in lines overexpressing TabHLH1 under osmotic stress and exogenous ABA conditions; overexpression of them conferred plants modified stomata movement, leaf WLR, and growth feature under drought and high salinity, suggesting that these ABA-signaling genes are mediated by wheat TabHLH1 gene and involved in regulating plant responses to simulated drought and salt stresses. Our investigation indicates that the TabHLH1 gene plays critical roles in plant tolerance to osmotic stresses largely through an ABA-dependent pathway.
小麦bHLH家族基因TabHLH1对干旱和盐胁迫有响应,并且它在介导对上述胁迫的耐受性方面起着关键调节作用,主要通过一条与脱落酸(ABA)相关的途径发挥作用。渗透胁迫是影响植物生长和作物产量的不利因素。在本研究中,我们对编码小麦bHLH型转录因子(TF)蛋白的基因TabHLH1在介导植物适应渗透胁迫方面进行了表征。TabHLH1蛋白含有一个与其植物同类蛋白共有的保守的基本螺旋-环-螺旋(bHLH)结构域。在聚乙二醇(PEG)模拟的干旱胁迫、盐胁迫和外源脱落酸(ABA)处理下,根和叶中的TabHLH1转录本被诱导。在PEG模拟的干旱胁迫和盐胁迫处理下,过表达TabHLH1的烟草幼苗表现出更好的生长和与渗透胁迫相关的性状,相对于野生型(WT),其生物量增加,叶片失水率(WLR)降低。转基因株系在干旱胁迫、盐胁迫和外源ABA处理下还具有促进气孔关闭的作用,并且在渗透胁迫条件下脯氨酸和可溶性糖含量增加,过氧化氢(H₂O₂)含量降低,这表明TabHLH1介导的渗透调节物质积累和细胞活性氧稳态有助于提高对干旱胁迫和盐胁迫的耐受性。分别编码ABA受体和SnRK2家族激酶的NtPYL12和NtSAPK2;1基因,在渗透胁迫和外源ABA条件下,在过表达TabHLH1的株系中表达上调;它们的过表达赋予植物在干旱和高盐条件下改变的气孔运动、叶片WLR和生长特征,这表明这些ABA信号基因由小麦TabHLH1基因介导,并参与调节植物对模拟干旱和盐胁迫的响应。我们的研究表明,TabHLH1基因在植物对渗透胁迫的耐受性中起着关键作用,主要通过一条ABA依赖的途径发挥作用。