State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China.
College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China.
Plant Cell Rep. 2024 Oct 7;43(11):256. doi: 10.1007/s00299-024-03344-2.
Wheat TaCDPK1-5A plays critical roles in mediating drought tolerance through regulating osmotic stress-associated physiological processes. Calcium (Ca) acts as an essential second messenger in plant signaling pathways and impacts plant abiotic stress responses. This study reported the function of TaCDPK1-5A, a calcium-dependent protein kinase (CDPK) gene in T. aestivum, in mediating drought tolerance. TaCDPK1-5A sensitively responded to drought and exogenous abscisic acid (ABA) signaling, displaying induced transcripts in plants under drought and ABA treatments. Yeast two-hybrid and co-immunoprecipitation assays revealed that TaCDPK1-5A interacts with the mitogen-activated protein kinase TaMAPK4-7D whereas the latter with ABF transcription factor TaABF1-3A, suggesting that TaCDPK1-5A constitutes a signaling module with above partners to transduce signals initiated by drought/ABA stressors. Overexpression of TaCDPK1-5A, TaMAPK4-7D and TaABF1-3A enhanced plant drought adaptation by modulating the osmotic stress-related physiological indices, including increased osmolyte contents, enlarged root morphology, and promoted stomata closure. Yeast one-hybrid assays indicated the binding ability of TaABF1-3A with promoters of TaP5CS1-1B, TaPIN3-5A, and TaSLAC1-3-2A, the genes encoding P5CS enzyme, PIN-FORMED protein, and slow anion channel, respectively. ChIP-PCR and transcriptional activation assays confirmed that TaABF1-3A regulates these genes at transcriptional level. Moreover, transgene analysis indicated that these stress-responsive genes positively regulated proline biosynthesis (TaP5CS1-1B), root morphology (TaPIN3-5A), and stomata closing (TaSLAC1-3-2A) upon drought signaling. Positive correlations were observed between yield and the transcripts of TaCDPK1-5A signaling partners in wheat cultivars under drought condition, with haplotype TaCDPK1-5A-Hap1 contributing to improved drought tolerance. Our study concluded that TaCDPK1-5A positively regulates drought adaptation and is a valuable target for molecular breeding the drought-tolerant cultivars in T. aestivum.
小麦 TaCDPK1-5A 通过调节与渗透胁迫相关的生理过程,在介导耐旱性方面发挥关键作用。钙(Ca)作为植物信号通路中的必需第二信使,影响植物的非生物胁迫反应。本研究报道了 TaCDPK1-5A(小麦中的钙依赖蛋白激酶(CDPK)基因)在介导耐旱性方面的功能。TaCDPK1-5A 对干旱和外源脱落酸(ABA)信号敏感,在干旱和 ABA 处理下的植物中显示出诱导的转录本。酵母双杂交和共免疫沉淀实验表明,TaCDPK1-5A 与丝裂原活化蛋白激酶 TaMAPK4-7D 相互作用,而后者与 ABF 转录因子 TaABF1-3A 相互作用,表明 TaCDPK1-5A 与上述伙伴一起构成一个信号模块,以转导由干旱/ABA 胁迫引发的信号。TaCDPK1-5A、TaMAPK4-7D 和 TaABF1-3A 的过表达通过调节与渗透胁迫相关的生理指标,包括增加渗透物含量、扩大根形态和促进气孔关闭,增强植物对干旱的适应能力。酵母单杂交实验表明 TaABF1-3A 与 TaP5CS1-1B、TaPIN3-5A 和 TaSLAC1-3-2A 启动子的结合能力,这些基因分别编码 P5CS 酶、PIN 形成蛋白和慢阴离子通道。ChIP-PCR 和转录激活实验证实 TaABF1-3A 在转录水平上调节这些基因。此外,转基因分析表明,这些应激响应基因正向调节脯氨酸生物合成(TaP5CS1-1B)、根形态(TaPIN3-5A)和气孔关闭(TaSLAC1-3-2A)在干旱信号下。在干旱条件下,小麦品种中 TaCDPK1-5A 信号伙伴的转录物与产量之间存在正相关关系,其中 TaCDPK1-5A 单倍型 TaCDPK1-5A-Hap1 有助于提高耐旱性。本研究得出结论,TaCDPK1-5A 正向调节耐旱性,是培育小麦耐旱品种的有价值的分子靶标。