Sekar Ramanan, Taillefert Martial, DiChristina Thomas J
School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
Appl Environ Microbiol. 2016 Oct 14;82(21):6335-6343. doi: 10.1128/AEM.02325-16. Print 2016 Nov 1.
Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies.
A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS).
1,4 - 二氧六环以及氯化有机溶剂三氯乙烯(TCE)和四氯乙烯(也称为全氯乙烯 [PCE])的不当处置已导致土壤和地下水的广泛污染。在本研究中,对先前设计的微生物驱动芬顿反应系统进行了重新配置,以生成羟基(HO˙)自由基,用于同时转化源区水平的 TCE、PCE 和 1,4 - 二氧六环的单一、二元和三元混合物。重新配置的芬顿反应系统由添加了乳酸盐、Fe(III) 和污染物的 Fe(III) 还原兼性厌氧菌希瓦氏菌属单胞菌(Shewanella oneidensis)的补料分批培养物驱动,并暴露于交替的厌氧和好氧条件下。为避免由于挥发性导致污染物损失,将微生物驱动芬顿反应系统的 Fe(II) 生成、过氧化氢生成和污染物转化阶段分开。重新配置的芬顿反应系统将 TCE、PCE 和 1,4 - 二氧六环作为单一污染物或二元和三元混合物进行转化。在等摩尔浓度的 PCE 和 TCE 存在下,实验得出的 PCE 和 TCE 转化速率之比几乎与相应的 HO˙自由基反应速率常数之比相同。重新配置的芬顿反应系统可作为一个异位平台,用于同时降解混合的 TCE、PCE 和 1,4 - 二氧六环,并为原位修复技术的未来发展提供有价值的信息。
对一个微生物驱动的芬顿反应系统[由 Fe(III) 还原兼性厌氧菌单胞希瓦氏菌驱动]进行了重新配置,以将源区水平的 TCE、PCE 和 1,4 - 二氧六环作为单一污染物或二元和三元混合物进行转化。因此,微生物驱动的芬顿反应可作为一个异位平台,用于同时降解至少三种(可能更多)混合污染物。本研究中开发的微生物驱动芬顿反应进行异位和原位降解的其他目标包括多种易受芬顿反应产生的 HO˙自由基攻击的环境污染物组合,包括混合的 1,4 - 二氧六环、五氯苯酚(PCP)、PCE、TCE、1,1,2 - 三氯乙烷(TCA)和全氟烷基物质(PFAS)羽流。