Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, Auckland, New Zealand.
School of Biological Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.
J Hazard Mater. 2010 Dec 15;184(1-3):234-240. doi: 10.1016/j.jhazmat.2010.08.027. Epub 2010 Aug 17.
The degradation of tetrachlorothene (PCE) and hexachloroethane (HCA) using Fe(II) and Fe(II)-citrate at different H(2)O(2) concentrations was studied to clarify the role of oxidation and reduction pathways in Fenton chemistry. The interactions between oxidative and reductive radicals, and the cyclic nature of the Fe(II)-Fe(III) ions make for a complex system that displays a suppression or enhancement of PCE or HCA degradation as the experimental conditions are varied. PCE degradation decreased, while HCA degradation increased, for larger H(2)O(2) concentration. The degradations of PCE and HCA were lower in vials where they were individually present compared to vials with the PCE-HCA mixture. Using Fe(II)-citrate instead of Fe(II) resulted in slower PCE and insignificant HCA degradation. These observations indicate that degradation efficiency losses arise from interactions between the oxidant and reductant radical moieties, and that the production of reduction radicals is only significant when the hydroxyl radical (OH) production is rapid.
使用 Fe(II) 和 Fe(II)-柠檬酸盐在不同 H(2)O(2)浓度下降解四氯乙烯 (PCE) 和六氯乙烷 (HCA),以阐明 Fenton 化学中氧化和还原途径的作用。氧化和还原自由基之间的相互作用以及 Fe(II)-Fe(III)离子的循环性质使得该系统非常复杂,在不同的实验条件下,会表现出 PCE 或 HCA 降解的抑制或增强。随着 H(2)O(2)浓度的增加,PCE 的降解减少,而 HCA 的降解增加。与仅含有 PCE-HCA 混合物的小瓶相比,在分别含有 PCE 和 HCA 的小瓶中,PCE 和 HCA 的降解率较低。使用 Fe(II)-柠檬酸盐代替 Fe(II)会导致 PCE 降解缓慢,而 HCA 降解不明显。这些观察结果表明,降解效率的损失源于氧化剂和还原剂自由基部分之间的相互作用,并且只有当羟基自由基 (OH) 的产生迅速时,还原自由基的产生才具有重要意义。