Department of Physics, University of California Berkeley, 359 Birge Hall, Berkeley, California 94720, USA.
Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany.
Nat Commun. 2016 Aug 22;7:12492. doi: 10.1038/ncomms12492.
Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.
材料中的线性分散电子表现为无质量的外尔或狄拉克准粒子,由于它们与难以捉摸的超高相对论性粒子非常相似,以及它们在未来电子学中的潜力,它们仍然令人着迷。然而,外尔费米子的实验特征通常很微妙和间接,特别是如果它们与传统的、有质量的准粒子共存的话。在这里,我们在强磁场中进入量子极限状态时,观察到了 Weyl 半金属 NbAs 的磁转矩出现明显异常。在量子极限时,转矩的符号发生了变化,这表明磁各向异性发生了反转,这可以直接归因于 Weyl 电子的拓扑性质。我们的结果表明,异常的量子极限转矩测量提供了一种直接的实验方法来识别和区分 Weyl 和 Dirac 系统。