Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany.
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA.
Nat Commun. 2018 Sep 28;9(1):3975. doi: 10.1038/s41467-018-06412-w.
Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂F/∂θ, the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations.
量子材料中常见的异常行为源于其有效的低维物理特性,反映了自旋和电荷自由度的基本各向异性。在这里,我们引入磁各向系数 k = ∂F/∂θ,其中 F 是自由能,θ 是磁场方向在晶体中的变化。我们表明,磁各向系数可以通过商用原子力显微镜悬臂在磁场下共振频率的偏移来定量确定。这种检测方法的灵敏度达到了百万分之一,能够测量纳克级样品的磁各向异性,我们在 Weyl 半金属 NbP 上进行了演示。在自旋液体候选材料 RuCl 中测量磁各向系数突出了它对各向异性相变的敏感性,并允许通过 Ehrenfest 关系与其他热力学系数进行定量比较。