Suppr超能文献

一种用于从多个数据源预测潜在健康状态的贝叶斯层次模型及其在前列腺癌主动监测中的应用。

A Bayesian hierarchical model for prediction of latent health states from multiple data sources with application to active surveillance of prostate cancer.

作者信息

Coley Rebecca Yates, Fisher Aaron J, Mamawala Mufaddal, Carter Herbert Ballentine, Pienta Kenneth J, Zeger Scott L

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, U.S.A.

James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, U.S.A.

出版信息

Biometrics. 2017 Jun;73(2):625-634. doi: 10.1111/biom.12577. Epub 2016 Aug 22.

Abstract

In this article, we present a Bayesian hierarchical model for predicting a latent health state from longitudinal clinical measurements. Model development is motivated by the need to integrate multiple sources of data to improve clinical decisions about whether to remove or irradiate a patient's prostate cancer. Existing modeling approaches are extended to accommodate measurement error in cancer state determinations based on biopsied tissue, clinical measurements possibly not missing at random, and informative partial observation of the true state. The proposed model enables estimation of whether an individual's underlying prostate cancer is aggressive, requiring surgery and/or radiation, or indolent, permitting continued surveillance. These individualized predictions can then be communicated to clinicians and patients to inform decision-making. We demonstrate the model with data from a cohort of low-risk prostate cancer patients at Johns Hopkins University and assess predictive accuracy among a subset for whom true cancer state is observed. Simulation studies confirm model performance and explore the impact of adjusting for informative missingness on true state predictions. R code is provided in an online supplement and at http://github.com/rycoley/prediction-prostate-surveillance.

摘要

在本文中,我们提出了一种贝叶斯层次模型,用于根据纵向临床测量预测潜在健康状态。模型开发的动机是需要整合多源数据,以改善关于是否切除或照射患者前列腺癌的临床决策。现有的建模方法得到扩展,以适应基于活检组织的癌症状态确定中的测量误差、可能非随机缺失的临床测量以及真实状态的信息性部分观察。所提出的模型能够估计个体潜在的前列腺癌是侵袭性的(需要手术和/或放疗)还是惰性的(允许继续监测)。然后可以将这些个性化预测传达给临床医生和患者,为决策提供依据。我们用来自约翰霍普金斯大学一组低风险前列腺癌患者的数据对模型进行了演示,并在观察到真实癌症状态的子集中评估了预测准确性。模拟研究证实了模型性能,并探讨了调整信息性缺失对真实状态预测的影响。在线补充资料以及http://github.com/rycoley/prediction-prostate-surveillance提供了R代码。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验