Suppr超能文献

常规健康数据中的信息性存在和观察:临床风险预测方法学综述。

Informative presence and observation in routine health data: A review of methodology for clinical risk prediction.

机构信息

Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, United Kingdom.

MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom.

出版信息

J Am Med Inform Assoc. 2021 Jan 15;28(1):155-166. doi: 10.1093/jamia/ocaa242.

Abstract

OBJECTIVE

Informative presence (IP) is the phenomenon whereby the presence or absence of patient data is potentially informative with respect to their health condition, with informative observation (IO) being the longitudinal equivalent. These phenomena predominantly exist within routinely collected healthcare data, in which data collection is driven by the clinical requirements of patients and clinicians. The extent to which IP and IO are considered when using such data to develop clinical prediction models (CPMs) is unknown, as is the existing methodology aiming at handling these issues. This review aims to synthesize such existing methodology, thereby helping identify an agenda for future methodological work.

MATERIALS AND METHODS

A systematic literature search was conducted by 2 independent reviewers using prespecified keywords.

RESULTS

Thirty-six articles were included. We categorized the methods presented within as derived predictors (including some representation of the measurement process as a predictor in the model), modeling under IP, and latent structures. Including missing indicators or summary measures as predictors is the most commonly presented approach amongst the included studies (24 of 36 articles).

DISCUSSION

This is the first review to collate the literature in this area under a prediction framework. A considerable body relevant of literature exists, and we present ways in which the described methods could be developed further. Guidance is required for specifying the conditions under which each method should be used to enable applied prediction modelers to use these methods.

CONCLUSIONS

A growing recognition of IP and IO exists within the literature, and methodology is increasingly becoming available to leverage these phenomena for prediction purposes. IP and IO should be approached differently in a prediction context than when the primary goal is explanation. The work included in this review has demonstrated theoretical and empirical benefits of incorporating IP and IO, and therefore we recommend that applied health researchers consider incorporating these methods in their work.

摘要

目的

信息性存在(IP)是指患者数据的存在或缺失与他们的健康状况有关,具有信息性观察(IO)是其纵向等效物。这些现象主要存在于常规收集的医疗保健数据中,其中数据收集是由患者和临床医生的临床需求驱动的。在使用此类数据开发临床预测模型(CPM)时,考虑 IP 和 IO 的程度以及现有的旨在处理这些问题的方法尚不清楚。本综述旨在综合这些现有的方法,从而有助于确定未来方法工作的议程。

材料和方法

两名独立审查员使用预设的关键词进行了系统的文献搜索。

结果

共纳入 36 篇文章。我们将文章中提出的方法分为衍生预测因子(包括模型中作为预测因子的测量过程的一些表示)、IP 下的建模和潜在结构。将缺失指标或汇总指标作为预测因子包括在内是纳入研究中最常见的方法(36 篇文章中的 24 篇)。

讨论

这是首次在预测框架下对该领域文献进行的综述。存在大量相关文献,我们提出了进一步发展描述方法的方法。需要指导来指定每种方法应在何种条件下使用,以使应用预测建模者能够使用这些方法。

结论

文献中越来越认识到 IP 和 IO 的存在,并且越来越多地提供了利用这些现象进行预测的方法。在预测背景下,IP 和 IO 的处理方式应与主要目标是解释时有所不同。本综述中包含的工作已经证明了纳入 IP 和 IO 的理论和经验优势,因此我们建议应用健康研究人员在他们的工作中考虑纳入这些方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5b/7810439/80b5b5e84278/ocaa242f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验