Suppr超能文献

比较多个数字PCR实验的方法。

Methods for comparing multiple digital PCR experiments.

作者信息

Burdukiewicz Michał, Rödiger Stefan, Sobczyk Piotr, Menschikowski Mario, Schierack Peter, Mackiewicz Paweł

机构信息

University of Wroclaw, Faculty of Biotechnology, Department of Genomics, Wroclaw, Poland.

Institute of Biotechnology, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany.

出版信息

Biomol Detect Quantif. 2016 Aug 10;9:14-9. doi: 10.1016/j.bdq.2016.06.004. eCollection 2016 Sep.

Abstract

The estimated mean copy per partition (λ) is the essential information from a digital PCR (dPCR) experiment because λ can be used to calculate the target concentration in a sample. However, little information is available how to statistically compare dPCR runs of multiple runs or reduplicates. The comparison of λ values from several runs is a multiple comparison problem, which can be solved using the binary structure of dPCR data. We propose and evaluate two novel methods based on Generalized Linear Models (GLM) and Multiple Ratio Tests (MRT) for comparison of digital PCR experiments. We enriched our MRT framework with computation of simultaneous confidence intervals suitable for comparing multiple dPCR runs. The evaluation of both statistical methods support that MRT is faster and more robust for dPCR experiments performed in large scale. Our theoretical results were confirmed by the analysis of dPCR measurements of dilution series. Both methods were implemented in the dpcR package (v. 0.2) for the open source R statistical computing environment.

摘要

每个分区的估计平均拷贝数(λ)是数字PCR(dPCR)实验的关键信息,因为λ可用于计算样品中的目标浓度。然而,关于如何对多次运行或重复实验的dPCR结果进行统计学比较的信息却很少。来自几次运行的λ值比较是一个多重比较问题,可以利用dPCR数据的二元结构来解决。我们提出并评估了两种基于广义线性模型(GLM)和多重比率检验(MRT)的新方法,用于比较数字PCR实验。我们通过计算适用于比较多个dPCR运行的同时置信区间,丰富了我们的MRT框架。对这两种统计方法的评估表明,对于大规模进行的dPCR实验,MRT更快且更稳健。我们的理论结果通过对稀释系列的dPCR测量分析得到了证实。这两种方法都在用于开源R统计计算环境的dpcR包(v. 0.2)中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4057/4983647/ad546aa4c177/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验