Suppr超能文献

基于数据网格化的数字 PCR 分析的稳健多重聚类和去噪。

Robust Multiplexed Clustering and Denoising of Digital PCR Assays by Data Gridding.

机构信息

Stanford Genome Technology Center, Stanford University , Palo Alto, California 94304, United States.

Division of Oncology, Stanford School of Medicine , Stanford, California 94305, United States.

出版信息

Anal Chem. 2017 Nov 21;89(22):11913-11917. doi: 10.1021/acs.analchem.7b02688. Epub 2017 Nov 7.

Abstract

Digital PCR (dPCR) relies on the analysis of individual partitions to accurately quantify nucleic acid species. The most widely used analysis method requires manual clustering through individual visual inspection. Some automated analysis methods have emerged but do not robustly account for multiplexed targets, low target concentration, and assay noise. In this study, we describe an open source analysis software called Calico that uses "data gridding" to increase the sensitivity of clustering toward small clusters. Our workflow also generates quality score metrics in order to gauge and filter individual assay partitions by how well they were classified. We applied our analysis algorithm to multiplexed droplet-based digital PCR data sets in both EvaGreen and probes-based schemes, and targeted the oncogenic BRAF V600E and KRAS G12D mutations. We demonstrate an automated clustering sensitivity of down to 0.1% mutant fraction and filtering of artifactual assay partitions from low quality DNA samples. Overall, we demonstrate a vastly improved approach to analyzing ddPCR data that can be applied to clinical use, where automation and reproducibility are critical.

摘要

数字 PCR(dPCR)依赖于对单个分区的分析,以准确量化核酸种类。最广泛使用的分析方法需要通过手动聚类进行逐个目视检查。已经出现了一些自动化分析方法,但不能很好地处理多重靶标、低靶浓度和检测噪声。在这项研究中,我们描述了一种名为 Calico 的开源分析软件,该软件使用“数据网格化”来提高对小簇的聚类灵敏度。我们的工作流程还生成了质量评分指标,以便通过对各个检测分区的分类程度来评估和筛选它们。我们将分析算法应用于基于液滴的数字 PCR 数据集中的多重 EvaGreen 和探针方案,并针对致癌的 BRAF V600E 和 KRAS G12D 突变。我们证明了一种自动聚类灵敏度可低至 0.1%的突变分数,并且可以从低质量 DNA 样本中过滤出人为的检测分区。总的来说,我们展示了一种大大改进的 ddPCR 数据分析方法,可应用于临床,其中自动化和可重复性至关重要。

相似文献

1
Robust Multiplexed Clustering and Denoising of Digital PCR Assays by Data Gridding.
Anal Chem. 2017 Nov 21;89(22):11913-11917. doi: 10.1021/acs.analchem.7b02688. Epub 2017 Nov 7.
3
Applying Standard Clinical Chemistry Assay Validation to Droplet Digital PCR Quantitative Liquid Biopsy Testing.
Clin Chem. 2018 Dec;64(12):1732-1742. doi: 10.1373/clinchem.2018.291278. Epub 2018 Sep 20.
4
Mutant DNA quantification by digital PCR can be confounded by heating during DNA fragmentation.
Biotechniques. 2016 Apr 1;60(4):175-6, 178, 180 passim. doi: 10.2144/000114401. eCollection 2016 Apr.
5
Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material.
Talanta. 2020 Jan 15;207:120293. doi: 10.1016/j.talanta.2019.120293. Epub 2019 Aug 24.
9
10-Plex Digital Polymerase Chain Reaction with Four-Color Melting Curve Analysis for Simultaneous and Genotyping.
Anal Chem. 2020 Sep 1;92(17):11705-11713. doi: 10.1021/acs.analchem.0c01704. Epub 2020 Aug 19.
10
Development of ultra-short PCR assay to reveal BRAF V600 mutation status in Thai colorectal cancer tissues.
PLoS One. 2018 Jun 7;13(6):e0198795. doi: 10.1371/journal.pone.0198795. eCollection 2018.

引用本文的文献

1
Digital PCR threshold robustness analysis and optimization using dipcensR.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae507.
3
Subfamily-specific quantification of endogenous mouse L1 retrotransposons by droplet digital PCR.
Anal Biochem. 2020 Jul 15;601:113779. doi: 10.1016/j.ab.2020.113779. Epub 2020 May 20.
4
Therapeutic Monitoring of Circulating DNA Mutations in Metastatic Cancer with Personalized Digital PCR.
J Mol Diagn. 2020 Feb;22(2):247-261. doi: 10.1016/j.jmoldx.2019.10.008. Epub 2019 Dec 16.
5
dPCR: A Technology Review.
Sensors (Basel). 2018 Apr 20;18(4):1271. doi: 10.3390/s18041271.

本文引用的文献

1
Model-Based Classification for Digital PCR: Your Umbrella for Rain.
Anal Chem. 2017 Apr 18;89(8):4461-4467. doi: 10.1021/acs.analchem.6b04208. Epub 2017 Apr 7.
2
Fundamentals of multiplexing with digital PCR.
Biomol Detect Quantif. 2016 May 27;10:15-23. doi: 10.1016/j.bdq.2016.05.002. eCollection 2016 Dec.
3
Methods for comparing multiple digital PCR experiments.
Biomol Detect Quantif. 2016 Aug 10;9:14-9. doi: 10.1016/j.bdq.2016.06.004. eCollection 2016 Sep.
4
Towards precision medicine.
Nat Rev Genet. 2016 Aug 16;17(9):507-22. doi: 10.1038/nrg.2016.86.
9
Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, 'definetherain'.
J Virol Methods. 2014 Jun;202(100):46-53. doi: 10.1016/j.jviromet.2014.02.020. Epub 2014 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验