Stanford Genome Technology Center, Stanford University , Palo Alto, California 94304, United States.
Division of Oncology, Stanford School of Medicine , Stanford, California 94305, United States.
Anal Chem. 2017 Nov 21;89(22):11913-11917. doi: 10.1021/acs.analchem.7b02688. Epub 2017 Nov 7.
Digital PCR (dPCR) relies on the analysis of individual partitions to accurately quantify nucleic acid species. The most widely used analysis method requires manual clustering through individual visual inspection. Some automated analysis methods have emerged but do not robustly account for multiplexed targets, low target concentration, and assay noise. In this study, we describe an open source analysis software called Calico that uses "data gridding" to increase the sensitivity of clustering toward small clusters. Our workflow also generates quality score metrics in order to gauge and filter individual assay partitions by how well they were classified. We applied our analysis algorithm to multiplexed droplet-based digital PCR data sets in both EvaGreen and probes-based schemes, and targeted the oncogenic BRAF V600E and KRAS G12D mutations. We demonstrate an automated clustering sensitivity of down to 0.1% mutant fraction and filtering of artifactual assay partitions from low quality DNA samples. Overall, we demonstrate a vastly improved approach to analyzing ddPCR data that can be applied to clinical use, where automation and reproducibility are critical.
数字 PCR(dPCR)依赖于对单个分区的分析,以准确量化核酸种类。最广泛使用的分析方法需要通过手动聚类进行逐个目视检查。已经出现了一些自动化分析方法,但不能很好地处理多重靶标、低靶浓度和检测噪声。在这项研究中,我们描述了一种名为 Calico 的开源分析软件,该软件使用“数据网格化”来提高对小簇的聚类灵敏度。我们的工作流程还生成了质量评分指标,以便通过对各个检测分区的分类程度来评估和筛选它们。我们将分析算法应用于基于液滴的数字 PCR 数据集中的多重 EvaGreen 和探针方案,并针对致癌的 BRAF V600E 和 KRAS G12D 突变。我们证明了一种自动聚类灵敏度可低至 0.1%的突变分数,并且可以从低质量 DNA 样本中过滤出人为的检测分区。总的来说,我们展示了一种大大改进的 ddPCR 数据分析方法,可应用于临床,其中自动化和可重复性至关重要。