Ambrose Anthony R, Baxter Wendy L, Wong Christopher S, Burgess Stephen S O, Williams Cameron B, Næsborg Rikke R, Koch George W, Dawson Todd E
Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
School of Plant Biology, University of Western Australia, Perth, 6009, Australia.
Oecologia. 2016 Nov;182(3):713-30. doi: 10.1007/s00442-016-3705-3. Epub 2016 Aug 23.
Optimality theory states that whole-tree carbon gain is maximized when leaf N and photosynthetic capacity profiles are distributed along vertical light gradients such that the marginal gain of nitrogen investment is identical among leaves. However, observed photosynthetic N gradients in trees do not follow this prediction, and the causes for this apparent discrepancy remain uncertain. Our objective was to evaluate how hydraulic limitations potentially modify crown-level optimization in Sequoiadendron giganteum (giant sequoia) trees up to 90 m tall. Leaf water potential (Ψ l ) and branch sap flow closely followed diurnal patterns of solar radiation throughout each tree crown. Minimum leaf water potential correlated negatively with height above ground, while leaf mass per area (LMA), shoot mass per area (SMA), leaf nitrogen content (%N), and bulk leaf stable carbon isotope ratios (δ(13)C) correlated positively with height. We found no significant vertical trends in maximum leaf photosynthesis (A), stomatal conductance (g s), and intrinsic water-use efficiency (A/g s), nor in branch-averaged transpiration (E L), stomatal conductance (G S), and hydraulic conductance (K L). Adjustments in hydraulic architecture appear to partially compensate for increasing hydraulic limitations with height in giant sequoia, allowing them to sustain global maximum summer water use rates exceeding 2000 kg day(-1). However, we found that leaf N and photosynthetic capacity do not follow the vertical light gradient, supporting the hypothesis that increasing limitations on water transport capacity with height modify photosynthetic optimization in tall trees.
最优性理论指出,当叶片氮素和光合能力分布沿着垂直光梯度,使得各叶片间氮素投资的边际收益相同时,整棵树的碳增益达到最大化。然而,树木中观察到的光合氮梯度并不遵循这一预测,这种明显差异的原因仍不确定。我们的目标是评估水力限制如何潜在地改变高达90米的巨杉树树冠水平的优化。在整个树冠中,叶片水势(Ψl)和树枝液流紧密跟随太阳辐射的日变化模式。最低叶片水势与离地高度呈负相关,而单位面积叶质量(LMA)、单位面积茎质量(SMA)、叶片氮含量(%N)和叶片整体稳定碳同位素比率(δ(13)C)与高度呈正相关。我们发现,最大叶片光合速率(A)、气孔导度(gs)和内在水分利用效率(A/gs),以及树枝平均蒸腾速率(EL)、气孔导度(GS)和水力导度(KL)均无显著的垂直趋势。水力结构的调整似乎部分补偿了巨杉随着高度增加的水力限制,使其能够维持超过2000千克/天的全球夏季最大水分利用速率。然而,我们发现叶片氮素和光合能力并不遵循垂直光梯度,这支持了随着高度增加水分运输能力的限制会改变高大树木光合优化的假设。