Suppr超能文献

图上固定概率和时间的精确数值计算。

Exact numerical calculation of fixation probability and time on graphs.

作者信息

Hindersin Laura, Möller Marius, Traulsen Arne, Bauer Benedikt

机构信息

Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany.

Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany; Institute of Mathematics, University of Lübeck, D-23562 Lübeck, Germany.

出版信息

Biosystems. 2016 Dec;150:87-91. doi: 10.1016/j.biosystems.2016.08.010. Epub 2016 Aug 20.

Abstract

The Moran process on graphs is a popular model to study the dynamics of evolution in a spatially structured population. Exact analytical solutions for the fixation probability and time of a new mutant have been found for only a few classes of graphs so far. Simulations are time-expensive and many realizations are necessary, as the variance of the fixation times is high. We present an algorithm that numerically computes these quantities for arbitrary small graphs by an approach based on the transition matrix. The advantage over simulations is that the calculation has to be executed only once. Building the transition matrix is automated by our algorithm. This enables a fast and interactive study of different graph structures and their effect on fixation probability and time. We provide a fast implementation in C with this note (Hindersin et al., 2016). Our code is very flexible, as it can handle two different update mechanisms (Birth-death or death-Birth), as well as arbitrary directed or undirected graphs.

摘要

图上的莫兰过程是研究空间结构化种群进化动态的一种常用模型。到目前为止,仅针对少数几类图找到了新突变体固定概率和时间的精确解析解。由于固定时间的方差很大,模拟耗时且需要多次实现。我们提出了一种算法,通过基于转移矩阵的方法为任意小图数值计算这些量。与模拟相比,其优势在于计算只需执行一次。我们的算法可自动构建转移矩阵。这使得能够快速且交互式地研究不同的图结构及其对固定概率和时间的影响。我们在此说明中提供了一个用C语言实现的快速程序(欣德辛等人,2016年)。我们的代码非常灵活,因为它可以处理两种不同的更新机制(生死或死 - 生)以及任意有向或无向图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验