Alcalde Cuesta F, González Sequeiros P, Lozano Rojo Á
GeoDynApp - ECSING Group, Spain.
GeoDynApp - ECSING Group, Spain; Dpto. de Didáctica das Ciencias Experimentais, Facultade de Formación do Profesorado, Universidade de Santiago de Compostela, Avda. Ramón Ferreiro, 10, E-27002 Lugo, Spain.
Biosystems. 2015 Mar;129:25-35. doi: 10.1016/j.biosystems.2015.01.007. Epub 2015 Jan 24.
Evolutionary dynamics has been classically studied for homogeneous populations, but now there is a growing interest in the non-homogeneous case. One of the most important models has been proposed in Lieberman et al. (2005), adapting to a weighted directed graph the process described in Moran (1958). The Markov chain associated with the graph can be modified by erasing all non-trivial loops in its state space, obtaining the so-called Embedded Markov chain (EMC). The fixation probability remains unchanged, but the expected time to absorption (fixation or extinction) is reduced. In this paper, we shall use this idea to compute asymptotically the average fixation probability for complete bipartite graphs K(n,m). To this end, we firstly review some recent results on evolutionary dynamics on graphs trying to clarify some points. We also revisit the 'Star Theorem' proved in Lieberman et al. (2005) for the star graphs K(1,m). Theoretically, EMC techniques allow fast computation of the fixation probability, but in practice this is not always true. Thus, in the last part of the paper, we compare this algorithm with the standard Monte Carlo method for some kind of complex networks.
进化动力学一直以来主要针对同质群体进行研究,但现在人们对非同质情况的兴趣与日俱增。Lieberman等人(2005年)提出了一个最重要的模型,它将Moran(1958年)所描述的过程应用于加权有向图。与该图相关的马尔可夫链可以通过消除其状态空间中的所有非平凡环来进行修改,从而得到所谓的嵌入马尔可夫链(EMC)。固定概率保持不变,但吸收(固定或灭绝)的预期时间会减少。在本文中,我们将利用这一思想渐近地计算完全二分图K(n,m)的平均固定概率。为此,我们首先回顾一些关于图上进化动力学的最新结果,试图澄清一些要点。我们还重新审视了Lieberman等人(2005年)为星型图K(1,m)证明的“星型定理”。从理论上讲,EMC技术可以快速计算固定概率,但在实际中并非总是如此。因此,在本文的最后一部分,我们将这种算法与针对某些复杂网络的标准蒙特卡罗方法进行比较。