Suppr超能文献

湍流中苯酚降解菌生长的实验研究与动力学建模

Experimental studies and kinetic modeling of the growth of phenol-degrading bacteria in turbulent fluids.

作者信息

Wang Linqiong, Li Yi, Niu Lihua, Zhang Wenlong, Li Jie, Yang Nan

机构信息

Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China.

出版信息

Environ Sci Pollut Res Int. 2016 Nov;23(22):22711-22720. doi: 10.1007/s11356-016-7460-0. Epub 2016 Aug 25.

Abstract

Understanding the interaction between microorganisms and fluid dynamics is important for aquatic ecosystems, though only sporadic attention has been focused on this topic in the past. In this study, particular attention was paid to the phenol-degrading bacterial strains Microbacterium oxydans LY1 and Alcaligenes faecalis LY2 subjected to controlled fluid flow under laboratory conditions. These two strains were found to be able to degrade phenols over a concentration range from 50 to 500 mg/L under different turbulence conditions ranging from 0 to 250 rpm. The time it took to reach total phenol degradation decreased when the turbulence was increased in both strains, with increasing energy dissipation rates ranging from 0.110 to 6.241 W/kg, corresponding to changes in the bacterial diffusive sublayer thickness (δ) and enhanced oxygen uptake. Moreover, the maximum specific growth rates of the two strains also increased with the enhancement of turbulence. A model integrating growth inhibition and fluid motion was proposed based on the self-inhibition Haldane model by introducing a turbulence parameter, α. The resulting modified Haldane model was designed to include fluid motion as a variable in the quantification of the physiological responses of microorganisms. This modified Haldane model could be considered a useful laboratory reference when modeling procedures for water environment bioremediation. Graphical abstract Cell nutrition uptake cartoon schematic diagram for M. oxydans LY1 under different turbulent condition (50 and 200 rpm).

摘要

了解微生物与流体动力学之间的相互作用对水生生态系统很重要,尽管过去对此主题仅给予了零星关注。在本研究中,特别关注了在实验室条件下受到可控流体流动作用的苯酚降解细菌菌株氧化微杆菌LY1和粪产碱菌LY2。发现这两种菌株在0至250 rpm的不同湍流条件下能够在50至500 mg/L的浓度范围内降解苯酚。两种菌株中,随着湍流增加,总苯酚降解所需时间减少,能量耗散率从0.110增加到6.241 W/kg,这与细菌扩散亚层厚度(δ)的变化以及氧气摄取增加相对应。此外,两种菌株的最大比生长速率也随着湍流增强而增加。基于自抑制的霍尔丹模型,通过引入湍流参数α,提出了一个整合生长抑制和流体运动的模型。所得的修正霍尔丹模型旨在将流体运动作为一个变量纳入微生物生理反应的量化中。在对水环境生物修复建模程序时,这个修正的霍尔丹模型可被视为一个有用的实验室参考。图形摘要 不同湍流条件(50和200 rpm)下氧化微杆菌LY1的细胞营养摄取卡通示意图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验