Suppr超能文献

线粒体-细胞核相互作用介导果蝇性别特异性转录谱

Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila.

作者信息

Mossman Jim A, Tross Jennifer G, Li Nan, Wu Zhijin, Rand David M

机构信息

Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912

Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02115.

出版信息

Genetics. 2016 Oct;204(2):613-630. doi: 10.1534/genetics.116.192328. Epub 2016 Aug 24.

Abstract

The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses.

摘要

线粒体的组装和功能需要线粒体DNA(mtDNA)和核DNA(nDNA)这两个不同基因组的协调表达。任一基因组中的突变都可能是表型变异的来源,然而它们的共表达作为变异来源在很大程度上被忽视了,尤其是在新兴的线粒体替代疗法范式中。在这里,我们测试了转录组如何响应果蝇中mtDNA和nDNA的变异以及线粒体-核相互作用(mtDNA×nDNA)。我们使用了两种mtDNA单倍型,它们在大量单核苷酸多态性上存在差异,氨基酸差异超过100个。我们将每种单倍型置于两种黑腹果蝇核背景中的每一种上,并测试了两性的转录差异。我们发现,大量转录本在核背景之间存在差异表达,并且mtDNA类型改变了nDNA基因的表达,这表明线粒体基因型存在逆行的、反式效应。雌性通常比雄性对基因扰动更敏感,并且雄性在每种核背景中表现出线粒体DNA的不对称效应;mtDNA效应具有核背景特异性。mtDNA敏感基因在两性的雄性或雌性限制表达空间中均未富集。通过各种差异表达分析,我们表明两性对线粒体-核共变的反应存在显著差异,但mtDNA基因在不同核背景和性别中始终存在差异表达。我们的结果提供了证据,表明主要的mtDNA效应在不同核背景中可能是一致的,但mtDNA和nDNA之间的相互作用可导致性别特异性的全局转录反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dec5/5068850/36dff4a90852/613fig1.jpg

相似文献

1
Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila.
Genetics. 2016 Oct;204(2):613-630. doi: 10.1534/genetics.116.192328. Epub 2016 Aug 24.
2
Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila.
Mol Biol Evol. 2017 Feb 1;34(2):447-466. doi: 10.1093/molbev/msw246.
5
Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila.
Genetics. 2016 May;203(1):463-84. doi: 10.1534/genetics.116.187286. Epub 2016 Mar 10.
6
Mitochondrial DNA Fitness Depends on Nuclear Genetic Background in .
G3 (Bethesda). 2019 Apr 9;9(4):1175-1188. doi: 10.1534/g3.119.400067.
8
Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background.
Aging Cell. 2008 Dec;7(6):795-804. doi: 10.1111/j.1474-9726.2008.00428.x. Epub 2008 Aug 21.
9
Evidence for mitochondrial genetic control of autosomal gene expression.
Hum Mol Genet. 2016 Dec 15;25(24):5332-5338. doi: 10.1093/hmg/ddw347.
10
Impact of mitonuclear interactions on life-history responses to diet.
Philos Trans R Soc Lond B Biol Sci. 2020 Jan 20;375(1790):20190416. doi: 10.1098/rstb.2019.0416. Epub 2019 Dec 2.

引用本文的文献

2
The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes.
Proc Natl Acad Sci U S A. 2024 Jun 11;121(24):e2321267121. doi: 10.1073/pnas.2321267121. Epub 2024 Jun 5.
3
Mother's Curse effects on lifespan and aging.
Front Aging. 2024 Mar 8;5:1361396. doi: 10.3389/fragi.2024.1361396. eCollection 2024.
4
Hybridization and gene expression: Beyond differentially expressed genes.
Mol Ecol. 2024 Feb 27:e17303. doi: 10.1111/mec.17303.
5
The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes.
bioRxiv. 2023 Dec 9:2023.12.08.570893. doi: 10.1101/2023.12.08.570893.
6
Evolutionary genetics of the mitochondrial genome: insights from Drosophila.
Genetics. 2023 Jul 6;224(3). doi: 10.1093/genetics/iyad036.
7
Mitonuclear Interactions and the Origin of Macaque Societies.
Genome Biol Evol. 2023 Feb 3;15(2). doi: 10.1093/gbe/evad010.
8
Mitochondrial effects on fertility and longevity in contradict predictions of the mother's curse hypothesis.
Proc Biol Sci. 2022 Nov 30;289(1987):20221211. doi: 10.1098/rspb.2022.1211. Epub 2022 Nov 16.
10
Mitonuclear interactions alter sex-specific longevity in a species without sex chromosomes.
Proc Biol Sci. 2021 Nov 10;288(1962):20211813. doi: 10.1098/rspb.2021.1813. Epub 2021 Nov 3.

本文引用的文献

1
SEX CHROMOSOMES AND THE EVOLUTION OF SEXUAL DIMORPHISM.
Evolution. 1984 Jul;38(4):735-742. doi: 10.1111/j.1558-5646.1984.tb00346.x.
2
Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila.
Genetics. 2016 May;203(1):463-84. doi: 10.1534/genetics.116.187286. Epub 2016 Mar 10.
3
Mitonuclear communication in homeostasis and stress.
Nat Rev Mol Cell Biol. 2016 Apr;17(4):213-26. doi: 10.1038/nrm.2016.23. Epub 2016 Mar 9.
5
6
Genetic compensation induced by deleterious mutations but not gene knockdowns.
Nature. 2015 Aug 13;524(7564):230-3. doi: 10.1038/nature14580. Epub 2015 Jul 13.
7
A Drosophila model for mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase.
Dis Model Mech. 2015 Aug 1;8(8):843-54. doi: 10.1242/dmm.019323. Epub 2015 May 5.
8
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015 Apr 20;43(7):e47. doi: 10.1093/nar/gkv007. Epub 2015 Jan 20.
9
HTSeq--a Python framework to work with high-throughput sequencing data.
Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.
10
Architecture of mammalian respiratory complex I.
Nature. 2014 Nov 6;515(7525):80-84. doi: 10.1038/nature13686. Epub 2014 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验