Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.
Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA.
IUBMB Life. 2018 Dec;70(12):1275-1288. doi: 10.1002/iub.1954. Epub 2018 Nov 5.
Mitochondrial function requires the coordinated expression of dozens of gene products from the mitochondrial genome and hundreds from the nuclear genomes. The systems that emerge from these interactions convert the food we eat and the oxygen we breathe into energy for life, while regulating a wide range of other cellular processes. These facts beg the question of whether the gene-by-gene interactions (G x G) that enable mitochondrial function are distinct from the gene-by-environment interactions (G x E) that fuel mitochondrial activity. We examine this question using a Drosophila model of mitonuclear interactions in which experimental combinations of mtDNA and nuclear chromosomes generate pairs of mitonuclear genotypes to test for epistatic interactions (G x G). These mitonuclear genotypes are then exposed to altered dietary or oxygen environments to test for G x E interactions. We use development time to assess dietary effects, and genome wide RNAseq analyses to assess hypoxic effects on transcription, which can be partitioned in to mito, nuclear, and environmental (G x G x E) contributions to these complex traits. We find that mitonuclear epistasis is universal, and that dietary and hypoxic treatments alter the epistatic interactions. We further show that the transcriptional response to alternative mitonuclear interactions has significant overlap with the transcriptional response to alternative oxygen environments. Gene coexpression analyses suggest that these shared genes are more central in networks of gene interactions, implying some functional overlap between epistasis and genotype by environment interactions. These results are discussed in the context of evolutionary fitness, the genetic basis of complex traits, and the challenge of achieving precision in personalized medicine. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1275-1288, 2018.
线粒体功能需要协调表达来自线粒体基因组的数十种基因产物和来自核基因组的数百种基因产物。这些相互作用所产生的系统将我们所吃的食物和呼吸的氧气转化为生命所需的能量,同时调节着广泛的其他细胞过程。这些事实不禁让人质疑,使线粒体功能发挥作用的基因间相互作用(G x G)是否与为线粒体活动提供燃料的基因-环境相互作用(G x E)不同。我们使用一种果蝇模型来检验这个问题,该模型模拟了线粒体与核相互作用,其中 mtDNA 和核染色体的实验组合产生了一对线粒体-核基因型,以测试上位性相互作用(G x G)。然后,这些线粒体-核基因型会暴露在改变的饮食或氧气环境中,以测试基因-环境相互作用(G x E)。我们使用发育时间来评估饮食的影响,并用全基因组 RNAseq 分析来评估缺氧对转录的影响,这些影响可以被分解为这些复杂性状的线粒体、核和环境(G x G x E)贡献。我们发现线粒体-核上位性是普遍存在的,并且饮食和缺氧处理改变了上位性相互作用。我们进一步表明,替代线粒体-核相互作用的转录反应与替代氧气环境的转录反应有显著重叠。基因共表达分析表明,这些共享基因在基因相互作用网络中更为核心,这意味着上位性和基因型与环境相互作用之间存在一些功能重叠。这些结果在进化适应性、复杂性状的遗传基础以及实现个性化医学精准性的挑战等方面进行了讨论。