Vogel Christoph F A, Charrier Jessica G, Wu Dalei, McFall Alexander S, Li Wen, Abid Aamir, Kennedy Ian M, Anastasio Cort
a Department of Environmental Toxicology , University of California , Davis , CA , USA.
b Center for Health and the Environment , University of California , Davis , CA , USA.
Free Radic Res. 2016;50(11):1153-1164. doi: 10.3109/10715762.2016.1152360. Epub 2016 Aug 25.
While nanoparticles (NPs) are increasingly used in a variety of consumer products and medical applications, some of these materials have potential health concerns. Macrophages are the primary responders to particles that initiate oxidative stress and inflammatory reactions. Here, we utilized six flame-synthesized, engineered iron oxide NPs with various physicochemical properties (e.g. Fe oxidation state and crystal size) to study their interactions with RAW 264.7 macrophages, their iron solubilities, and their abilities to produce hydroxyl radical in an acellular assay. Both iron solubility and hydroxyl radical production varied between NPs depending on crystalline diameter and surface area of the particles, but not on iron oxidation state. Macrophage treatment with the iron oxide NPs showed a dose-dependent increase of heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO-1). The nuclear factor (NF)-erythroid-derived 2 (E2)-related factor 2 (Nrf2) modulates the transcriptional activity of antioxidant response element (ARE)-driven genes, such as HO-1 and NQO-1. Here, we show that the iron oxide NPs activate Nrf2, leading to its increased nuclear accumulation and enhanced Nrf2 DNA-binding activity in NP-treated RAW 264.7 macrophages. Iron solubility and acellular hydroxyl radical generation depend on the physical properties of the NPs, especially crystalline diameter; however, these properties are weakly linked to the activation of cellular signaling of Nrf2 and the expression of oxidative stress markers. Overall, our work shows for the first time that iron oxide nanoparticles induce cellular marker genes of oxidative stress and that this effect is transcriptionally mediated through the Nrf2-ARE signaling pathway in macrophages.
虽然纳米颗粒(NPs)越来越多地用于各种消费品和医学应用中,但其中一些材料存在潜在的健康问题。巨噬细胞是引发氧化应激和炎症反应的颗粒的主要应答者。在这里,我们利用六种火焰合成的、具有各种物理化学性质(如铁氧化态和晶体尺寸)的工程化氧化铁纳米颗粒,研究它们与RAW 264.7巨噬细胞的相互作用、铁溶解度以及在无细胞测定中产生羟基自由基的能力。铁溶解度和羟基自由基的产生在纳米颗粒之间有所不同,这取决于颗粒的晶体直径和表面积,而不取决于铁氧化态。用氧化铁纳米颗粒处理巨噬细胞显示,血红素加氧酶1(HO-1)和NAD(P)H:醌氧化还原酶(NQO-1)呈剂量依赖性增加。核因子(NF)-红细胞衍生2(E2)相关因子2(Nrf2)调节抗氧化反应元件(ARE)驱动的基因(如HO-1和NQO-1)的转录活性。在这里,我们表明氧化铁纳米颗粒激活Nrf2,导致其在经纳米颗粒处理的RAW 264.7巨噬细胞中的核积累增加和Nrf2 DNA结合活性增强。铁溶解度和无细胞羟基自由基的产生取决于纳米颗粒的物理性质,尤其是晶体直径;然而,这些性质与Nrf2细胞信号传导的激活和氧化应激标志物的表达之间的联系较弱。总体而言,我们的工作首次表明氧化铁纳米颗粒可诱导氧化应激的细胞标志物基因,并且这种效应是通过巨噬细胞中的Nrf2-ARE信号通路转录介导的。