Suppr超能文献

用于预防服务对象遭受儿童虐待及其他不良后果的预测风险建模:深入机器学习的“黑匣子”

Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the 'Black Box' of Machine Learning.

作者信息

Gillingham Philip

机构信息

School of Social Work and Human Services, University of Queensland, St Lucia Campus, Brisbane, Queensland, Australia.

出版信息

Br J Soc Work. 2016 Jun;46(4):1044-1058. doi: 10.1093/bjsw/bcv031. Epub 2015 Apr 8.

Abstract

Recent developments in digital technology have facilitated the recording and retrieval of administrative data from multiple sources about children and their families. Combined with new ways to mine such data using algorithms which can 'learn', it has been claimed that it is possible to develop tools that can predict which individual children within a population are most likely to be maltreated. The proposed benefit is that interventions can then be targeted to the most vulnerable children and their families to prevent maltreatment from occurring. As expertise in predictive modelling increases, the approach may also be applied in other areas of social work to predict and prevent adverse outcomes for vulnerable service users. In this article, a glimpse inside the 'black box' of predictive tools is provided to demonstrate how their development for use in social work may not be straightforward, given the nature of the data recorded about service users and service activity. The development of predictive risk modelling (PRM) in New Zealand is focused on as an example as it may be the first such tool to be applied as part of ongoing reforms to child protection services.

摘要

数字技术的最新发展推动了从多个来源记录和检索有关儿童及其家庭的行政数据。结合使用能够“学习”的算法挖掘此类数据的新方法,有人声称有可能开发出工具,来预测人群中哪些儿童个体最有可能受到虐待。这样做的好处是,随后可以针对最脆弱的儿童及其家庭进行干预,以防止虐待行为的发生。随着预测模型专业知识的增加,该方法也可应用于社会工作的其他领域,以预测和预防弱势服务对象的不良后果。在本文中,我们深入探究了预测工具的“黑匣子”,以说明鉴于所记录的服务对象和服务活动数据的性质,将其开发用于社会工作可能并非易事。新西兰预测性风险建模(PRM)的发展被作为一个例子重点介绍,因为它可能是首个作为儿童保护服务持续改革一部分而应用的此类工具。

相似文献

2
Children in the public benefit system at risk of maltreatment: identification via predictive modeling.
Am J Prev Med. 2013 Sep;45(3):354-9. doi: 10.1016/j.amepre.2013.04.022.
3
Resilience after maltreatment: the importance of social services as facilitators of positive adaptation.
Child Abuse Negl. 2013 Feb-Mar;37(2-3):110-5. doi: 10.1016/j.chiabu.2012.08.004. Epub 2012 Dec 20.
6
Predictive modeling: potential application in prevention services.
Am J Prev Med. 2015 May;48(5):509-19. doi: 10.1016/j.amepre.2014.12.003. Epub 2015 Mar 17.
7
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.
8
The implementation of the Care Programme Approach for service users with a learning disability. Building Bridges to the same Old Horizons?
J Psychiatr Ment Health Nurs. 2017 Aug;24(6):396-402. doi: 10.1111/jpm.12398. Epub 2017 Jul 4.
9
Unpacking the black box of improvement.
Int J Qual Health Care. 2018 Apr 20;30(suppl_1):15-19. doi: 10.1093/intqhc/mzy009.
10
Adversity, Maltreatment, and Resilience in Young Children.
Acad Pediatr. 2016 Apr;16(3):233-9. doi: 10.1016/j.acap.2015.12.005. Epub 2016 Feb 9.

引用本文的文献

3
Analysis of child development facts and myths using text mining techniques and classification models.
Heliyon. 2024 Aug 23;10(17):e36652. doi: 10.1016/j.heliyon.2024.e36652. eCollection 2024 Sep 15.
4
Initial development of tools to identify child abuse and neglect in pediatric primary care.
BMC Med Inform Decis Mak. 2023 Nov 17;23(1):266. doi: 10.1186/s12911-023-02361-7.
5
A Practical Framework for Considering the Use of Predictive Risk Modeling in Child Welfare.
Ann Am Acad Pol Soc Sci. 2020 Nov;692(1):162-181. doi: 10.1177/0002716220978200. Epub 2021 Jan 29.
7
Does the Psychopathology of the Parents Predict the Developmental-Emotional Problems of the Toddlers?
Noro Psikiyatr Ars. 2020 Sep 21;57(4):265-269. doi: 10.29399/npa.25074. eCollection 2020 Dec.
8
Child safety, protection, and safeguarding in the time of COVID-19 in Great Britain: Proposing a conceptual framework.
Child Abuse Negl. 2020 Dec;110(Pt 2):104668. doi: 10.1016/j.chiabu.2020.104668. Epub 2020 Aug 13.
9
Using family network data in child protection services.
PLoS One. 2019 Oct 29;14(10):e0224554. doi: 10.1371/journal.pone.0224554. eCollection 2019.

本文引用的文献

2
Children in the public benefit system at risk of maltreatment: identification via predictive modeling.
Am J Prev Med. 2013 Sep;45(3):354-9. doi: 10.1016/j.amepre.2013.04.022.
3
Stress responses and decision making in child protection workers faced with high conflict situations.
Child Abuse Negl. 2012 May;36(5):404-12. doi: 10.1016/j.chiabu.2012.01.003. Epub 2012 May 21.
4
Multidisciplinary Child Protection Decision Making About Physical Abuse: Determining Substantiation Thresholds and Biases.
Child Youth Serv Rev. 2011 Sep 1;33(9):1673-1682. doi: 10.1016/j.childyouth.2011.04.029.
5
Allegory of the cave: on the theme of substantiation.
Child Maltreat. 2009 Feb;14(1):69-72. doi: 10.1177/1077559508328257.
6
Time to leave substantiation behind: findings from a national probability study.
Child Maltreat. 2009 Feb;14(1):17-26. doi: 10.1177/1077559508326030. Epub 2008 Oct 29.
7
Caseworker judgments and substantiation.
Child Maltreat. 2009 Feb;14(1):38-52. doi: 10.1177/1077559508318400. Epub 2008 Sep 15.
8
Child abuse and neglect--is it time for a public health approach?
Aust N Z J Public Health. 2008 Aug;32(4):325-30. doi: 10.1111/j.1753-6405.2008.00249.x.
9
Differentiating between substantiated, suspected, and unsubstantiated maltreatment in Canada.
Child Maltreat. 2009 Feb;14(1):4-16. doi: 10.1177/1077559508318393. Epub 2008 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验