Arora Jayant, Hu Yue, Esfandiary Reza, Sathish Hasige A, Bishop Steven M, Joshi Sangeeta B, Middaugh C Russell, Volkin David B, Weis David D
a Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , KS , USA.
b Macromolecule and Vaccine Stabilization Center, University of Kansas , Lawrence , KS , USA.
MAbs. 2016 Nov/Dec;8(8):1561-1574. doi: 10.1080/19420862.2016.1222342. Epub 2016 Aug 25.
Concentration-dependent reversible self-association (RSA) of monoclonal antibodies (mAbs) poses a challenge to their pharmaceutical development as viable candidates for subcutaneous delivery. While the role of the antigen-binding fragment (Fab) in initiating RSA is well-established, little evidence supports the involvement of the crystallizable fragment (Fc). In this report, a variety of biophysical tools, including hydrogen exchange mass spectrometry, are used to elucidate the protein interface of such non-covalent protein-protein interactions. Using dynamic and static light scattering combined with viscosity measurements, we find that an IgG1 mAb (mAb-J) undergoes RSA primarily through electrostatic interactions and forms a monomer-dimer-tetramer equilibrium. We provide the first direct experimental mapping of the interface formed between the Fab and Fc domains of an antibody at high protein concentrations. Charge distribution heterogeneity between the positively charged interface spanning complementarity-determining regions CDR3H and CDR2L in the Fab and a negatively charged region in C3/Fc domain mediates the RSA of mAb-J. When arginine and NaCl are added, they disrupt RSA of mAb-J and decrease the solution viscosity. Fab-Fc domain interactions between mAb monomers may promote the formation of large transient antibody complexes that ultimately cause increases in solution viscosity. Our findings illustrate how limited specific arrangements of amino-acid residues can cause mAbs to undergo RSA at high protein concentrations and how conserved regions in the Fc portion of the antibody can also play an important role in initiating weak and transient protein-protein interactions.
单克隆抗体(mAb)的浓度依赖性可逆自缔合(RSA)对其作为皮下给药可行候选药物的药物开发构成了挑战。虽然抗原结合片段(Fab)在引发RSA中的作用已得到充分证实,但几乎没有证据支持可结晶片段(Fc)的参与。在本报告中,使用了包括氢交换质谱在内的多种生物物理工具来阐明这种非共价蛋白质-蛋白质相互作用的蛋白质界面。结合粘度测量使用动态和静态光散射,我们发现一种IgG1 mAb(mAb-J)主要通过静电相互作用发生RSA,并形成单体-二聚体-四聚体平衡。我们首次直接实验绘制了高蛋白浓度下抗体Fab和Fc结构域之间形成的界面。Fab中跨越互补决定区CDR3H和CDR2L的带正电界面与C3/Fc结构域中的带负电区域之间的电荷分布异质性介导了mAb-J的RSA。当加入精氨酸和NaCl时,它们破坏了mAb-J的RSA并降低了溶液粘度。mAb单体之间的Fab-Fc结构域相互作用可能促进形成大的瞬时抗体复合物,最终导致溶液粘度增加。我们的研究结果说明了氨基酸残基的有限特定排列如何导致mAb在高蛋白浓度下发生RSA,以及抗体Fc部分的保守区域如何在引发弱的和瞬时的蛋白质-蛋白质相互作用中也发挥重要作用。