Suppr超能文献

矿物表面水吸附与凝结机制中的粒径控制

Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces.

作者信息

Yeşilbaş Merve, Boily Jean-François

机构信息

Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.

出版信息

Sci Rep. 2016 Aug 26;6:32136. doi: 10.1038/srep32136.

Abstract

Atmospheric water vapour interacting with hydrophilic mineral surfaces can produce water films of various thicknesses and structures. In this work we show that mineral particle size controls water loadings achieved by water vapour deposition on 21 contrasting mineral samples exposed to atmospheres of up to ~16 Torr water (70% relative humidity at 25 °C). Submicrometer-sized particles hosted up to ~5 monolayers of water, while micrometer-sized particles up to several thousand monolayers. All films exhibited vibrational spectroscopic signals akin to liquid water, yet with a disrupted network of hydrogen bonds. Water adsorption isotherms were predicted using models (1- or 2- term Freundlich and Do-Do models) describing an adsorption and a condensation regime, respectively pertaining to the binding of water onto mineral surfaces and water film growth by water-water interactions. The Hygroscopic Growth Theory could also account for the particle size dependence on condensable water loadings under the premise that larger particles have a greater propensity of exhibiting of surface regions and interparticle spacings facilitating water condensation reactions. Our work should impact our ability to predict water film formation at mineral surfaces of contrasting particle sizes, and should thus contribute to our understanding of water adsorption and condensation reactions occuring in nature.

摘要

大气中的水蒸气与亲水性矿物表面相互作用可产生各种厚度和结构的水膜。在本研究中,我们发现矿物颗粒大小控制着水蒸气在21种不同矿物样品上沉积所达到的水负载量,这些样品暴露于高达约16托(25℃时相对湿度70%)的水蒸气环境中。亚微米级颗粒最多可容纳约5个水分子层,而微米级颗粒最多可容纳数千个水分子层。所有水膜均表现出类似于液态水的振动光谱信号,但氢键网络遭到破坏。利用分别描述吸附和凝聚过程的模型(单或双项弗罗因德利希模型和多纳-多纳模型)预测了水吸附等温线,这两个过程分别与水在矿物表面的结合以及水-水相互作用导致的水膜生长有关。吸湿增长理论也可以解释颗粒大小对可凝结水负载量的依赖性,前提是较大颗粒更倾向于展现出有利于水凝结反应的表面区域和颗粒间间距。我们的研究成果将影响我们预测不同颗粒大小矿物表面水膜形成的能力,从而有助于我们理解自然界中发生的水吸附和凝结反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26cb/5000481/2f75765c9cbc/srep32136-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验