Barnes Aaron M T, Dale Jennifer L, Chen Yuqing, Manias Dawn A, Greenwood Quaintance Kerryl E, Karau Melissa K, Kashyap Purna C, Patel Robin, Wells Carol L, Dunny Gary M
a Departments of Microbiology & Immunology , University of Minnesota Medical School , Minneapolis , MN , USA.
b Department of Laboratory Medicine and Pathology , Division of Clinical Microbiology, Mayo Clinic , Rochester , MN , USA.
Virulence. 2017 Apr 3;8(3):282-296. doi: 10.1080/21505594.2016.1208890. Epub 2016 Aug 25.
The mammalian gastrointestinal (GI) tract is a complex organ system with a twist-a significant portion of its composition is a community of microbial symbionts. The microbiota plays an increasingly appreciated role in many clinically-relevant conditions. It is important to understand the details of biofilm development in the GI tract since bacteria in this state not only use biofilms to improve colonization, biofilm bacteria often exhibit high levels of resistance to common, clinically relevant antibacterial drugs. Here we examine the initial colonization of the germ-free murine GI tract by Enterococcus faecalis-one of the first bacterial colonizers of the naïve mammalian gut. We demonstrate strong morphological similarities to our previous in vitro E. faecalis biofilm microcolony architecture using 3 complementary imaging techniques: conventional tissue Gram stain, immunofluorescent imaging (IFM) of constitutive fluorescent protein reporter expression, and low-voltage scanning electron microscopy (LV-SEM). E. faecalis biofilm microcolonies were readily identifiable throughout the entire lower GI tract, from the duodenum to the colon. Notably, biofilm development appeared to occur as discrete microcolonies directly attached to the epithelial surface rather than confluent sheets of cells throughout the GI tract even in the presence of high (>10) fecal bacterial loads. An in vivo competition experiment using a pool of 11 select E. faecalis mutant strains containing sequence-defined transposon insertions showed the potential of this model to identify genetic factors involved in E. faecalis colonization of the murine GI tract.
哺乳动物的胃肠道是一个复杂的器官系统,有一个特别之处——其很大一部分组成是微生物共生体群落。微生物群落在许多临床相关病症中发挥着越来越重要的作用。了解胃肠道生物膜形成的细节很重要,因为处于这种状态的细菌不仅利用生物膜来促进定植,而且生物膜细菌通常对常见的临床相关抗菌药物表现出高度抗性。在这里,我们研究了无特定病原体小鼠胃肠道被粪肠球菌(新生哺乳动物肠道最早的细菌定植者之一)的初始定植情况。我们使用三种互补成像技术,证明其与我们之前体外粪肠球菌生物膜微菌落结构有很强的形态相似性:传统组织革兰氏染色、组成型荧光蛋白报告基因表达的免疫荧光成像(IFM)和低电压扫描电子显微镜(LV-SEM)。在整个下胃肠道,从十二指肠到结肠,都很容易识别出粪肠球菌生物膜微菌落。值得注意的是,即使在粪便细菌载量很高(>10)的情况下,生物膜的形成似乎是以离散的微菌落形式直接附着在上皮表面,而不是在整个胃肠道形成融合的细胞片。一项使用包含序列定义转座子插入的11种精选粪肠球菌突变菌株库进行的体内竞争实验表明,该模型有潜力识别参与粪肠球菌在小鼠胃肠道定植的遗传因素。