Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
J Am Chem Soc. 2016 Sep 28;138(38):12541-51. doi: 10.1021/jacs.6b06937. Epub 2016 Sep 16.
Glycoconjugation is a promising strategy for specific targeting of cancer. In this study, we investigated the effect of d-glucose substitution position on the biological activity of glucose-platinum conjugates (Glc-Pts). We synthesized and characterized all possible positional isomers (C1α, C1β, C2, C3, C4, and C6) of a Glc-Pt. The synthetic routes presented here could, in principle, be extended to prepare glucose conjugates with different active ingredients, other than platinum. The biological activities of the compounds were evaluated both in vitro and in vivo. We discovered that varying the position of substitution of d-glucose alters not only the cellular uptake and cytotoxicity profile but also the GLUT1 specificity of resulting glycoconjugates, where GLUT1 is glucose transporter 1. The C1α- and C2-substituted Glc-Pts (1α and 2) accumulate in cancer cells most efficiently compared to the others, whereas the C3-Glc-Pt (3) is taken up least efficiently. Compounds 1α and 2 are more potent compared to 3 in DU145 cells. The α- and β-anomers of the C1-Glc-Pt also differ significantly in their cellular uptake and activity profiles. No significant differences in uptake of the Glc-Pts were observed in non-cancerous RWPE2 cells. The GLUT1 specificity of the Glc-Pts was evaluated by determining the cellular uptake in the absence and in the presence of the GLUT1 inhibitor cytochalasin B, and by comparing their anticancer activity in DU145 cells and a GLUT1 knockdown cell line. The results reveal that C2-substituted Glc-Pt 2 has the highest GLUT1-specific internalization, which also reflects the best cancer-targeting ability. In a syngeneic breast cancer mouse model overexpressing GLUT1, compound 2 showed antitumor efficacy and selective uptake in tumors with no observable toxicity. This study thus reveals the synthesis of all positional isomers of d-glucose substitution for platinum warheads with detailed glycotargeting characterization in cancer.
糖基化缀合是一种有前途的癌症特异性靶向策略。在这项研究中,我们研究了 D-葡萄糖取代位置对葡萄糖-铂缀合物(Glc-Pts)生物活性的影响。我们合成并表征了 Glc-Pt 的所有可能的位置异构体(C1α、C1β、C2、C3、C4 和 C6)。这里提出的合成路线原则上可以扩展到制备除铂以外的不同活性成分的葡萄糖缀合物。我们在体外和体内评估了化合物的生物活性。我们发现,改变 D-葡萄糖取代位置不仅会改变细胞摄取和细胞毒性谱,还会改变所得糖缀合物对 GLUT1 的特异性,GLUT1 是葡萄糖转运蛋白 1。与其他异构体相比,C1α-和 C2-取代的 Glc-Pts(1α 和 2)在癌细胞中最有效地积累,而 C3-Glc-Pt(3)的摄取效率最低。与 3 相比,化合物 1α 和 2 在 DU145 细胞中更有效。C1-Glc-Pt 的α-和β-端异构体在细胞摄取和活性谱方面也有显著差异。在非癌细胞 RWPE2 中,Glc-Pts 的摄取没有明显差异。通过在没有和存在 GLUT1 抑制剂细胞松弛素 B 的情况下测定细胞摄取,并比较它们在 DU145 细胞和 GLUT1 敲低细胞系中的抗癌活性,评估了 Glc-Pts 的 GLUT1 特异性。结果表明,C2-取代的 Glc-Pt 2 具有最高的 GLUT1 特异性内化,这也反映了最佳的癌症靶向能力。在过表达 GLUT1 的同源乳腺癌小鼠模型中,化合物 2 显示出抗肿瘤功效,并在肿瘤中选择性摄取,没有观察到毒性。因此,这项研究揭示了所有 D-葡萄糖取代铂弹头的位置异构体的合成,并详细表征了癌症中的糖靶向。