Cavalli Fabio, Lusnig Luca, Trentin Edmondo
Research Unit of Paleoradiology and Allied Sciences, LTS - SCIT, Integrated University Health Unit of Trieste, via della Pietà 2/1, 34100, Trieste, Italy.
Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, Via Roma 56, 53100, Siena, Italy.
Int J Legal Med. 2017 May;131(3):823-833. doi: 10.1007/s00414-016-1439-8. Epub 2016 Aug 29.
Sex determination on skeletal remains is one of the most important diagnosis in forensic cases and in demographic studies on ancient populations. Our purpose is to realize an automatic operator-independent method to determine the sex from the bone shape and to test an intelligent, automatic pattern recognition system in an anthropological domain. Our multiple-classifier system is based exclusively on the morphological variants of a curve that represents the sagittal profile of the calvarium, modeled via artificial neural networks, and yields an accuracy higher than 80 %. The application of this system to other bone profiles is expected to further improve the sensibility of the methodology.
在法医案件以及古代人口的人口统计学研究中,对骨骼遗骸进行性别鉴定是最重要的诊断之一。我们的目的是实现一种独立于操作员的自动方法,通过骨骼形状来确定性别,并在人类学领域测试一个智能的自动模式识别系统。我们的多分类器系统完全基于一条代表颅盖矢状轮廓的曲线的形态变体,通过人工神经网络进行建模,准确率高于80%。预计将该系统应用于其他骨骼轮廓将进一步提高该方法的敏感性。