Suppr超能文献

利用模式识别和神经网络从颅骨侧面形状进行非度量性别诊断:法医和体质人类学中计算机辅助诊断的创新模型。

Use of pattern recognition and neural networks for non-metric sex diagnosis from lateral shape of calvarium: an innovative model for computer-aided diagnosis in forensic and physical anthropology.

作者信息

Cavalli Fabio, Lusnig Luca, Trentin Edmondo

机构信息

Research Unit of Paleoradiology and Allied Sciences, LTS - SCIT, Integrated University Health Unit of Trieste, via della Pietà 2/1, 34100, Trieste, Italy.

Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, Via Roma 56, 53100, Siena, Italy.

出版信息

Int J Legal Med. 2017 May;131(3):823-833. doi: 10.1007/s00414-016-1439-8. Epub 2016 Aug 29.

Abstract

Sex determination on skeletal remains is one of the most important diagnosis in forensic cases and in demographic studies on ancient populations. Our purpose is to realize an automatic operator-independent method to determine the sex from the bone shape and to test an intelligent, automatic pattern recognition system in an anthropological domain. Our multiple-classifier system is based exclusively on the morphological variants of a curve that represents the sagittal profile of the calvarium, modeled via artificial neural networks, and yields an accuracy higher than 80 %. The application of this system to other bone profiles is expected to further improve the sensibility of the methodology.

摘要

在法医案件以及古代人口的人口统计学研究中,对骨骼遗骸进行性别鉴定是最重要的诊断之一。我们的目的是实现一种独立于操作员的自动方法,通过骨骼形状来确定性别,并在人类学领域测试一个智能的自动模式识别系统。我们的多分类器系统完全基于一条代表颅盖矢状轮廓的曲线的形态变体,通过人工神经网络进行建模,准确率高于80%。预计将该系统应用于其他骨骼轮廓将进一步提高该方法的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验