Kim Seryoung, Ihara Kohei, Katsube Satoshi, Ando Tasuke, Isogai Emiko, Yoneyama Hiroshi
Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1, Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, 981-8555, Japan.
Arch Microbiol. 2017 Jan;199(1):105-114. doi: 10.1007/s00203-016-1279-4. Epub 2016 Aug 29.
The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.
大肠杆菌alaE基因编码L-丙氨酸转运蛋白AlaE,该蛋白利用质子电化学势催化L-丙氨酸的主动输出。该转运蛋白仅由149个氨基酸残基和四个预测的跨膜结构域(TMs)组成,其中包含三个带电荷的氨基酸残基。由于L-丙氨酸的毒性积累,缺乏AlaE的L-丙氨酸非代谢细胞(ΔalaE细胞)对L-丙氨酰-L-丙氨酸表现出高度敏感性,该二肽的最低抑菌浓度(MIC)为2.5μg/ml。为了阐明AlaE输出L-丙氨酸的机制,我们将跨膜结构域中的带电荷氨基酸残基,即谷氨酸-30(TM-I)、精氨酸-45(TM-II)和天冬氨酸-84(TM-III),分别替换为各自的电荷保守氨基酸或净中性的半胱氨酸。产生R45K或R45C的ΔalaE细胞对该二肽表现出高度敏感性,表明精氨酸-45对AlaE活性至关重要。在表达E30D和E30C的ΔalaE细胞中,该二肽的MIC分别为156μg/ml和>10,000μg/ml,因此表明该位置的负电荷并非必需。表达D84E或D84C的ΔalaE细胞的MIC分别>10,000和78μg/ml,这意味着该位置需要一个负电荷。这些结果与完整细胞中L-丙氨酸积累实验的结果总体一致。因此,我们得出结论,AlaE跨膜结构域中的带电荷氨基酸残基(R45和D84)在L-丙氨酸输出中起关键作用。将C22、C28(均在TM-I中)和C135(C端区域)的三个半胱氨酸残基替换为丙氨酸对L-丙氨酸输出仅产生轻微影响。