Pathania Amit, Gupta Arvind Kumar, Dubey Swati, Gopal Balasubramanian, Sardesai Abhijit A
Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
Graduate Studies, Manipal University, Manipal, India.
J Bacteriol. 2016 Nov 4;198(23):3186-3199. doi: 10.1128/JB.00423-16. Print 2016 Dec 1.
ArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export of l-arginine (Arg) in Escherichia coli and l-lysine (Lys) and Arg in Corynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane of E. coli, we have employed a combination of cysteine accessibility in situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an N-C configuration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO function in vivo and that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO function in vivo and their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomer in vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit.
The orthologous proteins LysE of C. glutamicum and ArgO of E. coli function as exporters of the basic amino acids l-arginine and l-lysine and the basic amino acid l-arginine, respectively, and LysE can functionally substitute for ArgO when expressed in E. coli Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology that is distinct from that reported for LysE, with substantial variation in the topological arrangement of the proximal one-third portions of the two exporters. Additional genetic and in silico studies reveal the importance of (i) the cytoplasmic N-terminal domain, (ii) a pair of conserved aspartate residues, and (iii) potential intramolecular interactions in ArgO function and indicate that an Arg-translocating conduit is formed by a monomer of ArgO.
ArgO和LysE是输出蛋白LysE家族的成员,通常分别介导大肠杆菌中L-精氨酸(Arg)的输出以及谷氨酸棒杆菌中L-赖氨酸(Lys)和Arg的输出。在某些条件下,ArgO也介导Lys的输出。为了描绘ArgO在大肠杆菌细胞质膜中的排列方式,我们采用了原位半胱氨酸可及性、碱性磷酸酶融合报告基因和蛋白质建模相结合的方法,得出了ArgO的拓扑模型。我们的研究表明,ArgO呈N-C构型,可能形成一个五跨膜螺旋束,两侧分别是一个细胞质N端结构域(NTD),该结构域大致由其最初的38至43个氨基酸残基组成,以及一个短的周质C端区域(CTR)。诱变研究表明,CTR而非NTD对于ArgO在体内的功能是可有可无的,并且位于细胞质膜相对边缘附近的一对保守天冬氨酸残基可能在促进跨膜Arg通量中起关键作用。对在体内损害ArgO功能的氨基酸取代及其带有补偿性氨基酸改变的衍生物的进一步研究表明分子内相互作用在Arg输出机制中起作用,并且一些相互作用通过正常模式分析得到证实。最后,我们的研究表明ArgO在体内可能以单体形式存在,因此突出了在形成Arg转运通道时ArgO中分子内相互作用的必要性,而不是多个ArgO单体之间的相互作用。
谷氨酸棒杆菌的直系同源蛋白LysE和大肠杆菌的ArgO分别作为碱性氨基酸L-精氨酸和L-赖氨酸以及碱性氨基酸L-精氨酸的输出蛋白,并且当在大肠杆菌中表达时,LysE可以在功能上替代ArgO。尽管有这种功能等效性,但此处报道的研究表明,ArgO具有与报道的LysE不同的膜拓扑结构,这两种输出蛋白近端三分之一部分的拓扑排列有很大差异。额外的遗传学和计算机模拟研究揭示了(i)细胞质N端结构域、(ii)一对保守天冬氨酸残基以及(iii)ArgO功能中潜在分子内相互作用的重要性,并表明Arg转运通道由ArgO的单体形成。