Hefei National Laboratory for Physical Sciences at the Microscale iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, 230026, P.R. China.
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
Angew Chem Int Ed Engl. 2016 Sep 26;55(40):12465-9. doi: 10.1002/anie.201606313. Epub 2016 Aug 30.
The direct urea fuel cell (DUFC) is an important but challenging renewable energy production technology, it offers great promise for energy-sustainable developments and mitigating water contamination. However, DUFCs still suffer from the sluggish kinetics of the urea oxidation reaction (UOR) owing to a 6 e(-) transfer process, which poses a severe hindrance to their practical use. Herein, taking β-Ni(OH)2 nanosheets as the proof-of-concept study, we demonstrated a surface-chemistry strategy to achieve metallic Ni(OH)2 nanosheets by engineering their electronic structure, representing a first metallic configuration of transition-metal hydroxides. Surface sulfur incorporation successfully brings synergetic effects of more exposed active sites, good wetting behavior, and effective electron transport, giving rise to greatly enhanced performance for UOR. Metallic nanosheets exhibited a much higher current density, smaller onset potential and stronger durability.
直接尿素燃料电池(DUFC)是一种重要但具有挑战性的可再生能源生产技术,它为能源可持续发展和减轻水污染提供了巨大的前景。然而,由于 6e(-)转移过程,DUFC 仍然受到尿素氧化反应(UOR)动力学缓慢的影响,这对它们的实际应用构成了严重的阻碍。在此,我们以β-Ni(OH)2 纳米片作为概念验证研究,通过工程化其电子结构,展示了一种表面化学策略来实现金属 Ni(OH)2 纳米片,代表了过渡金属氢氧化物的第一个金属构型。表面硫的掺入成功地带来了更多暴露的活性位点、良好的润湿性和有效的电子传输的协同效应,从而大大提高了 UOR 的性能。金属纳米片表现出更高的电流密度、更小的起始电位和更强的耐久性。