Suppr超能文献

在嗜冷栖热袍菌中,fabF1对fabB突变的抑制作用是通过转录通读介导的。

Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis.

作者信息

Li Meng, Meng Qiu, Fu Huihui, Luo Qixia, Gao Haichun

机构信息

Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China

出版信息

J Bacteriol. 2016 Oct 21;198(22):3060-3069. doi: 10.1128/JB.00463-16. Print 2016 Nov 15.

Abstract

UNLABELLED

As type II fatty acid synthesis is essential for the growth of Escherichia coli, its many components are regarded as potential targets for novel antibacterial drugs. Among them, β-ketoacyl-acyl carrier protein (ACP) synthase (KAS) FabB is the exclusive factor for elongation of the cis-3-decenoyl-ACP (cis-3-C-ACP). In our previous study, we presented evidence to suggest that this may not be the case in Shewanella oneidensis, an emerging model gammaproteobacterium renowned for its respiratory versatility. Here, we identified FabF1, another KAS, as a functional replacement for FabB in S. oneidensis In fabB or desA (encoding a desaturase) cells, which are capable of making unsaturated fatty acids (UFA), FabF1 is barely produced. However, UFA auxotroph mutants devoid of both fabB and desA genes can be spontaneously converted to suppressor strains, which no longer require exogenous UFAs for growth. Suppression is caused by a TGTTTT deletion in the region upstream of the fabF1 gene, resulting in enhanced FabF1 production. We further demonstrated that the deletion leads to transcription read-through of the terminator for acpP, an acyl carrier protein gene immediately upstream of fabF1 There are multiple tandem repeats in the region covering the terminator, and the TGTTTT deletion, as well as others, compromises the terminator efficacy. In addition, FabF2 also shows an ability to complement the FabB loss, albeit substantially less effectively than FabF1.

IMPORTANCE

It has been firmly established that FabB for UFA synthesis via type II fatty acid synthesis in FabA-containing bacteria such as E. coli is essential. However, S. oneidensis appears to be an exception. In this bacterium, FabF1, when sufficiently expressed, is able to fully complement the FabB loss. Importantly, such a capability can be obtained by spontaneous mutations, which lead to transcription read-through. Therefore, our data, by identifying the functional overlap between FabB and FabFs, provide new insights into the current understanding of KAS and help reveal novel ways to block UFA synthesis for therapeutic purposes.

摘要

未标注

由于II型脂肪酸合成对于大肠杆菌的生长至关重要,其许多组分被视为新型抗菌药物的潜在靶点。其中,β-酮脂酰-酰基载体蛋白(ACP)合酶(KAS)FabB是顺式-3-癸烯酰-ACP(cis-3-C-ACP)延长的唯一因子。在我们之前的研究中,我们提供了证据表明在希瓦氏菌属的一种新兴模式γ-变形菌——食酸希瓦氏菌中情况可能并非如此,该菌以其呼吸多样性而闻名。在此,我们鉴定出另一种KAS——FabF1,它在食酸希瓦氏菌中可作为FabB的功能替代物。在能够合成不饱和脂肪酸(UFA)的fabB或desA(编码一种去饱和酶)细胞中,FabF1几乎不产生。然而,可以将同时缺失fabB和desA基因的UFA营养缺陷型突变体自发转化为抑制菌株,这些菌株不再需要外源UFA来生长。抑制是由fabF1基因上游区域中的TGTTTT缺失引起的,导致FabF1产量增加。我们进一步证明,该缺失导致紧邻fabF上游的酰基载体蛋白基因acpP的终止子发生转录通读。覆盖该终止子的区域存在多个串联重复序列,并且TGTTTT缺失以及其他缺失会损害终止子的效能。此外,FabF2也显示出能够弥补FabB缺失的能力,尽管其效果远不如FabF1。

重要性

已经明确证实,在含FabA的细菌(如大肠杆菌)中,通过II型脂肪酸合成进行UFA合成的FabB是必不可少的。然而,食酸希瓦氏菌似乎是个例外。在这种细菌中,FabF1在充分表达时能够完全弥补FabB的缺失。重要的是,这种能力可以通过自发突变获得,这些突变会导致转录通读。因此,我们的数据通过鉴定FabB和FabF之间的功能重叠,为当前对KAS的理解提供了新的见解,并有助于揭示为治疗目的而阻断UFA合成的新方法。

相似文献

1
Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis.
J Bacteriol. 2016 Oct 21;198(22):3060-3069. doi: 10.1128/JB.00463-16. Print 2016 Nov 15.
2
A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway.
J Biol Chem. 2021 Aug;297(2):100920. doi: 10.1016/j.jbc.2021.100920. Epub 2021 Jun 25.
3
Shewanella oneidensis FabB: A β-ketoacyl-ACP Synthase That Works with C16:1-ACP.
Front Microbiol. 2016 Mar 16;7:327. doi: 10.3389/fmicb.2016.00327. eCollection 2016.
5
Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters.
Mol Microbiol. 2011 Apr;80(1):195-218. doi: 10.1111/j.1365-2958.2011.07564.x. Epub 2011 Feb 21.
6
Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon.
Protein Cell. 2015 Sep;6(9):667-679. doi: 10.1007/s13238-015-0172-2. Epub 2015 Jun 7.
7
Roles of multiple KASIII homologues of Shewanella oneidensis in initiation of fatty acid synthesis and in cerulenin resistance.
Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Oct;1863(10):1153-1163. doi: 10.1016/j.bbalip.2018.06.020. Epub 2018 Jul 7.
8
Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria.
J Biol Chem. 2021 Dec;297(6):101434. doi: 10.1016/j.jbc.2021.101434. Epub 2021 Nov 18.
9
Transcriptional regulation of membrane lipid homeostasis in Escherichia coli.
J Biol Chem. 2009 Dec 11;284(50):34880-8. doi: 10.1074/jbc.M109.068239. Epub 2009 Oct 23.

引用本文的文献

1
Structure and mechanistic analyses of the gating mechanism of elongating ketosynthases.
ACS Catal. 2021 Jun 18;11(12):6787-6799. doi: 10.1021/acscatal.1c00745. Epub 2021 May 26.
2
Pleiotropic Effects of Hfq on the Cytochrome Content and Pyomelanin Production in Shewanella oneidensis.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0128922. doi: 10.1128/aem.01289-22. Epub 2022 Sep 8.
3
Mechanism-based cross-linking probes capture the Escherichia coli ketosynthase FabB in conformationally distinct catalytic states.
Acta Crystallogr D Struct Biol. 2022 Sep 1;78(Pt 9):1171-1179. doi: 10.1107/S2059798322007434. Epub 2022 Aug 30.
4
Genetic Suppression of Lethal Mutations in Fatty Acid Biosynthesis Mediated by a Secondary Lipid Synthase.
Appl Environ Microbiol. 2021 May 26;87(12):e0003521. doi: 10.1128/AEM.00035-21.
6
Promiscuous Enzymes Cause Biosynthesis of Diverse Siderophores in Shewanella oneidensis.
Appl Environ Microbiol. 2020 Mar 18;86(7). doi: 10.1128/AEM.00030-20.
7
Defining the binding determinants of OxyR: Implications for the link between the contracted OxyR regulon and adaptation.
J Biol Chem. 2018 Mar 16;293(11):4085-4096. doi: 10.1074/jbc.RA117.001530. Epub 2018 Jan 24.
8
Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis.
Sci Rep. 2017 Feb 14;7:42609. doi: 10.1038/srep42609.

本文引用的文献

2
Shewanella oneidensis FabB: A β-ketoacyl-ACP Synthase That Works with C16:1-ACP.
Front Microbiol. 2016 Mar 16;7:327. doi: 10.3389/fmicb.2016.00327. eCollection 2016.
4
Investigation into FlhFG reveals distinct features of FlhF in regulating flagellum polarity in Shewanella oneidensis.
Mol Microbiol. 2015 Oct;98(3):571-85. doi: 10.1111/mmi.13141. Epub 2015 Aug 22.
5
Unraveling the Mechanism for the Viability Deficiency of Shewanella oneidensis oxyR Null Mutant.
J Bacteriol. 2015 Jul;197(13):2179-2189. doi: 10.1128/JB.00154-15. Epub 2015 Apr 20.
8
Evidence for the requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis.
Biochim Biophys Acta. 2015 Feb;1850(2):318-28. doi: 10.1016/j.bbagen.2014.10.005. Epub 2014 Oct 12.
9
Effects of FlrBC on flagellar biosynthesis of Shewanella oneidensis.
Mol Microbiol. 2014 Sep;93(6):1269-83. doi: 10.1111/mmi.12731. Epub 2014 Aug 14.
10
Evidence for function overlapping of CymA and the cytochrome bc1 complex in the Shewanella oneidensis nitrate and nitrite respiration.
Environ Microbiol. 2014 Oct;16(10):3181-95. doi: 10.1111/1462-2920.12457. Epub 2014 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验