Mindrebo Jeffrey T, Chen Aochiu, Kim Woojoo E, Re Rebecca N, Davis Tony D, Noel Joseph P, Burkart Michael D
Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0358.
Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037.
ACS Catal. 2021 Jun 18;11(12):6787-6799. doi: 10.1021/acscatal.1c00745. Epub 2021 May 26.
Ketosynthases (KSs) catalyze carbon-carbon bond forming reactions in fatty acid synthases (FASs) and polyketide synthases (PKSs). KSs utilize a two-step ping pong kinetic mechanism to carry out an overall decarboxylative thio-Claisen condensation that can be separated into the transacylation and condensation reactions. In both steps, an acyl carrier protein (ACP) delivers thioester tethered substrates to the active sites of KSs. Therefore, protein-protein interactions (PPIs) and KS-mediated substrate recognition events are required for catalysis. Recently, crystal structures of elongating type II FAS KSs, FabF and FabB, in complex with ACP, AcpP, revealed distinct conformational states of two active site KS loops. These loops were proposed to operate via a gating mechanism to coordinate substrate recognition and delivery followed by catalysis. Here we interrogate this proposed gating mechanism by solving two additional high-resolution structures of substrate engaged AcpP-FabF complexes, one of which provides the missing AcpP-FabF gate-closed conformation. Clearly defined interactions of one of these active site loops with AcpP are present in both the open and closed conformations, suggesting AcpP binding triggers or stabilizes gating transitions, further implicating PPIs in carrier protein-dependent catalysis. We functionally demonstrate the importance of gating in the overall KS condensation reaction and provide experimental evidence for its role in the transacylation reaction. Furthermore, we evaluate the catalytic importance of these loops using alanine scanning mutagenesis and also investigate chimeric FabF constructs carrying elements found in type I PKS KS domains. These findings broaden our understanding of the KS mechanism which advances future engineering efforts in both FASs and evolutionarily related PKSs.
酮合成酶(KSs)催化脂肪酸合成酶(FASs)和聚酮化合物合成酶(PKSs)中的碳-碳键形成反应。KSs利用两步乒乓动力学机制进行整体脱羧硫代克莱森缩合反应,该反应可分为转酰基化反应和缩合反应。在这两个步骤中,酰基载体蛋白(ACP)将硫酯连接的底物递送至KSs的活性位点。因此,催化作用需要蛋白质-蛋白质相互作用(PPIs)和KS介导的底物识别事件。最近,延伸型II FAS KSs、FabF和FabB与ACP、AcpP形成复合物的晶体结构揭示了两个活性位点KS环的不同构象状态。有人提出这些环通过门控机制运作,以协调底物识别和递送,随后进行催化。在这里,我们通过解析底物结合的AcpP-FabF复合物的另外两个高分辨率结构来探究这一提出的门控机制,其中一个结构提供了缺失的AcpP-FabF门关闭构象。在开放和关闭构象中,这些活性位点环之一与AcpP的相互作用都明确界定,这表明AcpP结合触发或稳定门控转变,进一步表明PPIs在依赖载体蛋白的催化中起作用。我们从功能上证明了门控在整体KS缩合反应中的重要性,并为其在转酰基化反应中的作用提供了实验证据。此外,我们使用丙氨酸扫描诱变评估了这些环的催化重要性,并研究了携带I型PKS KS结构域中发现的元件的嵌合FabF构建体。这些发现拓宽了我们对KS机制的理解,这将推动未来对FASs和进化相关PKSs的工程改造工作。