Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP , P.O. Box 6165, 13083-859 Campinas, São Paulo, Brazil.
Instituto de Quimica, Universidade Estadual de Campinas, UNICAMP , P.O. Box 6154, 13084-971 Campinas, São Paulo, Brazil.
ACS Nano. 2016 Sep 27;10(9):8603-9. doi: 10.1021/acsnano.6b03908. Epub 2016 Sep 6.
Cesium lead halide perovskite quantum dots (PQDs) have emerged as a promising new platform for lighting applications. However, to date, light emitting diodes (LED) based on these materials exhibit limited efficiencies. One hypothesized limiting factor is fast nonradiative multiexciton Auger recombination. Using ultrafast spectroscopic techniques, we investigate multicarrier interaction and recombination mechanisms in cesium lead halide PQDs. By mapping the dependence of the biexciton Auger lifetime and the biexciton binding energy on nanomaterial size and composition, we find unusually strong Coulomb interactions among multiexcitons in PQDs. This results in weakly emissive biexcitons and trions, and accounts for low light emission efficiencies. We observe that, for strong confinement, the biexciton lifetime depends linearly on the PQD volume. This dependence becomes sublinear in the weak confinement regime as the PQD size increases beyond the Bohr radius. We demonstrate that Auger recombination is faster in PQDs compared to CdSe nanoparticles having the same volume, suggesting a stronger Coulombic interaction in the PQDs. We confirm this by demonstrating an increased biexciton binding energy, which reaches a maximum of about 100 meV, fully three times larger than in CdSe quantum dots. The biexciton shift can lead to low-threshold optical gain in these materials. These findings also suggest that materials engineering to reduce Coulombic interaction in cesium lead halide PQDs could improve prospects for high efficiency optoelectronic devices. Core-shell structures, in particular type-II nanostructures, which are known to reduce the bandedge Coulomb interaction in CdSe/CdS, could beneficially be applied to PQDs with the goal of increasing their potential in lighting applications.
铯铅卤钙钛矿量子点(PQDs)已成为照明应用的有前途的新平台。然而,迄今为止,基于这些材料的发光二极管(LED)的效率有限。一个假设的限制因素是快速非辐射多激子俄歇复合。使用超快光谱技术,我们研究了铯铅卤钙钛矿 PQD 中的多载流子相互作用和复合机制。通过绘制双激子俄歇寿命和双激子结合能对纳米材料尺寸和组成的依赖性,我们发现 PQD 中的多激子之间存在异常强的库仑相互作用。这导致双激子和三激子的发射较弱,并解释了低光发射效率的原因。我们观察到,对于强限制,双激子寿命与 PQD 体积呈线性关系。当 PQD 尺寸增大超过玻尔半径时,在弱限制区域,这种依赖性变为次线性。我们证明与具有相同体积的 CdSe 纳米粒子相比,PQD 中的俄歇复合更快,这表明 PQD 中的库仑相互作用更强。我们通过证明增加的双激子结合能来证实这一点,该结合能达到约 100meV 的最大值,比 CdSe 量子点大三倍。双激子位移可导致这些材料中的低阈值光增益。这些发现还表明,通过材料工程来降低铯铅卤钙钛矿 PQD 中的库仑相互作用可以提高高效光电设备的前景。核壳结构,特别是 II 型纳米结构,已知可以降低 CdSe/CdS 中的能带边缘库仑相互作用,因此可以将其有利地应用于 PQD,以提高其在照明应用中的潜力。