Cortés-Villena Alejandro, Cadranel Alejandro, Azizi Kobra, Torres Tomás, Guldi Dirk M, Pérez-Prieto Julia, Galian Raquel E
Institute of Molecular Science, University of Valencia, c/Catedrático José Beltrán Martínez 2, Paterna, 46980, Valencia, Spain.
FAU Profile Center SolarDepartment of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany.
Adv Sci (Weinh). 2025 Mar;12(9):e2414831. doi: 10.1002/advs.202414831. Epub 2025 Jan 10.
Energy transfer processes in nanohybrids are at the focal point of conceptualizing, designing, and realizing novel energy-harvesting systems featuring nanocrystals that absorb photons and transfer their energy unidirectionally to surface-immobilized functional dyes. Importantly, the functionality of these dyes defines the ultimate application. Herein, CsPbBr perovskite nanocrystals (NCs) are interfaced with zinc phthalocyanine (ZnPc) dyes featuring carboxylic acid. The functionality is the photosensitization of singlet oxygen. The CsPbBr@ZnPc nanohybrid is to the best of our knowledge the first example, in which an unusual Dexter-type singlet energy transfer between metal halide perovskite nanocrystals and phthalocyanine dyes enables singlet oxygen generation as a proof-of-concept application. A detailed temporal picture of the singlet energy transfer mechanism is made possible by combining key time-resolved spectroscopic techniques, that are, femtosecond, nanosecond, and microsecond transient absorption spectroscopy as well as time-correlated single photon counting, and target analyses. In fact, three excitonic components in the NCs govern a concerted Dexter-type energy transfer. The work illustrates the potential of CsPbBr@ZnPc as a singlet photosensitizer of ZnPc to produce singlet oxygen (O) almost quantitatively while photoexciting CsPbBr.
纳米杂化物中的能量转移过程是概念化、设计和实现新型能量收集系统的核心,这些系统具有能吸收光子并将其能量单向转移到表面固定功能染料的纳米晶体。重要的是,这些染料的功能决定了最终的应用。在此,CsPbBr钙钛矿纳米晶体(NCs)与具有羧酸的锌酞菁(ZnPc)染料相结合。其功能是单线态氧的光敏化。据我们所知,CsPbBr@ZnPc纳米杂化物是第一个例子,其中金属卤化物钙钛矿纳米晶体与酞菁染料之间不寻常的德克斯特型单线态能量转移能够产生单线态氧,作为概念验证应用。通过结合关键的时间分辨光谱技术,即飞秒、纳秒和微秒瞬态吸收光谱以及时间相关单光子计数和目标分析,使得单线态能量转移机制的详细时间图景成为可能。事实上,纳米晶体中的三个激子成分控制着协同的德克斯特型能量转移。这项工作说明了CsPbBr@ZnPc作为ZnPc的单线态光敏剂在光激发CsPbBr时几乎定量产生单线态氧(O)的潜力。