University of Applied Sciences Upper Austria, School of Informatics, Communications and Media, Softwarepark 11, 4232 Hagenberg, Austria.
University of Applied Sciences Upper Austria, School of Applied Health and Social Sciences, Garnisonstrasse 21, 4020 Linz, Austria.
Sci Rep. 2016 Sep 1;6:32317. doi: 10.1038/srep32317.
In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D-), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.
在输血医学中,鉴定 Rh 血型 D 型对于防止 Rh 血型 D 阴性受血者产生抗-D 免疫非常重要。特别是,非常低表达的 DEL 表型的检测至关重要,因此构成了标准免疫血液学的瓶颈。目前的首选方法吸附洗脱法并不能提供明确的结果。我们开发了一种互补的高灵敏度方法,可以可靠地鉴定 D 抗原的表达。在这里,我们提出了一个由高分辨率荧光显微镜、图像处理和机器学习组成的工作流程,该流程首次实现了在细胞水平上识别即使是少量的 D 抗原。我们的技术具有很高的灵敏度,可以捕捉到 D 抗原表达的全范围(包括 D+、弱 D、DEL、D-),允许进行自动化的群体分析,并实现了高达 96%的分类测试准确率,即使对于表达非常低的表型也是如此。