Thiede Erik H, Van Koten Brian, Weare Jonathan, Dinner Aaron R
Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
Department of Statistics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
J Chem Phys. 2016 Aug 28;145(8):084115. doi: 10.1063/1.4960649.
Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis. We discuss how the error scales with the number of windows. Then, we derive a central limit theorem for averages that are obtained from umbrella sampling. The central limit theorem suggests an estimator of the error contributions from individual windows, and we develop a simple and computationally inexpensive procedure for implementing it. We demonstrate this estimator for simulations of the alanine dipeptide and show that it emphasizes low free energy pathways between stable states in comparison to existing approaches for assessing error contributions. Our work suggests the possibility of using the estimator and, more generally, the eigenvector method for umbrella sampling to guide adaptation of the simulation parameters to accelerate convergence.
伞形抽样通过将模拟偏向坐标值窗口,然后将所得数据与物理权重相结合,有效地产生依赖于探索模型稀有状态的平衡平均值。在此,我们引入一个数学框架,将数据合并步骤转化为一个特征值问题。这种方法的优点是便于进行误差分析。我们讨论了误差如何随窗口数量缩放。然后,我们推导了从伞形抽样获得的平均值的中心极限定理。中心极限定理给出了各个窗口误差贡献的估计,我们开发了一个简单且计算成本低的程序来实现它。我们针对丙氨酸二肽的模拟展示了这个估计器,并表明与现有的评估误差贡献的方法相比,它突出了稳定状态之间的低自由能路径。我们的工作表明了使用该估计器的可能性,更普遍地说,使用伞形抽样的特征向量方法来指导模拟参数的调整以加速收敛。