Suppr超能文献

用于伞形抽样的特征向量方法可进行误差分析。

Eigenvector method for umbrella sampling enables error analysis.

作者信息

Thiede Erik H, Van Koten Brian, Weare Jonathan, Dinner Aaron R

机构信息

Department of Chemistry and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.

Department of Statistics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Chem Phys. 2016 Aug 28;145(8):084115. doi: 10.1063/1.4960649.

Abstract

Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis. We discuss how the error scales with the number of windows. Then, we derive a central limit theorem for averages that are obtained from umbrella sampling. The central limit theorem suggests an estimator of the error contributions from individual windows, and we develop a simple and computationally inexpensive procedure for implementing it. We demonstrate this estimator for simulations of the alanine dipeptide and show that it emphasizes low free energy pathways between stable states in comparison to existing approaches for assessing error contributions. Our work suggests the possibility of using the estimator and, more generally, the eigenvector method for umbrella sampling to guide adaptation of the simulation parameters to accelerate convergence.

摘要

伞形抽样通过将模拟偏向坐标值窗口,然后将所得数据与物理权重相结合,有效地产生依赖于探索模型稀有状态的平衡平均值。在此,我们引入一个数学框架,将数据合并步骤转化为一个特征值问题。这种方法的优点是便于进行误差分析。我们讨论了误差如何随窗口数量缩放。然后,我们推导了从伞形抽样获得的平均值的中心极限定理。中心极限定理给出了各个窗口误差贡献的估计,我们开发了一个简单且计算成本低的程序来实现它。我们针对丙氨酸二肽的模拟展示了这个估计器,并表明与现有的评估误差贡献的方法相比,它突出了稳定状态之间的低自由能路径。我们的工作表明了使用该估计器的可能性,更普遍地说,使用伞形抽样的特征向量方法来指导模拟参数的调整以加速收敛。

相似文献

1
Eigenvector method for umbrella sampling enables error analysis.
J Chem Phys. 2016 Aug 28;145(8):084115. doi: 10.1063/1.4960649.
2
Understanding the sources of error in MBAR through asymptotic analysis.
J Chem Phys. 2023 Jun 7;158(21). doi: 10.1063/5.0147243.
3
Leveraging the Information from Markov State Models To Improve the Convergence of Umbrella Sampling Simulations.
J Phys Chem B. 2016 Aug 25;120(33):8733-42. doi: 10.1021/acs.jpcb.6b05125. Epub 2016 Aug 3.
5
Analysis of the statistical error in umbrella sampling simulations by umbrella integration.
J Chem Phys. 2006 Jun 21;124(23):234106. doi: 10.1063/1.2206775.
6
Introducing sampling entropy in repository based adaptive umbrella sampling.
J Chem Phys. 2009 Dec 7;131(21):214105. doi: 10.1063/1.3267549.
9
Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics.
J Comput Chem. 2016 Jun 15;37(16):1413-24. doi: 10.1002/jcc.24349. Epub 2016 Apr 5.
10
Alchemical Free-Energy Calculations by Multiple-Replica λ-Dynamics: The Conveyor Belt Thermodynamic Integration Scheme.
J Chem Theory Comput. 2019 Apr 9;15(4):2392-2419. doi: 10.1021/acs.jctc.8b00782. Epub 2019 Mar 25.

引用本文的文献

2
Computing equilibrium free energies through a nonequilibrium quench.
J Chem Phys. 2024 Jan 21;160(3). doi: 10.1063/5.0176700.
3
Predicting rare events using neural networks and short-trajectory data.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112152. Epub 2023 May 9.
4
Understanding the sources of error in MBAR through asymptotic analysis.
J Chem Phys. 2023 Jun 7;158(21). doi: 10.1063/5.0147243.
5
A New Approach for Estimating the Free Energy Differences among Multiple Thermodynamic States in Statistical Simulations.
J Phys Chem Lett. 2023 Jun 8;14(22):5127-5133. doi: 10.1021/acs.jpclett.3c00620. Epub 2023 May 30.
6
Computing transition path theory quantities with trajectory stratification.
J Chem Phys. 2022 Jul 21;157(3):034106. doi: 10.1063/5.0087058.
7
Trajectory stratification of stochastic dynamics.
SIAM Rev Soc Ind Appl Math. 2018;60(4):909-938. doi: 10.1137/16M1104329. Epub 2018 Nov 8.
8
Stratification as a general variance reduction method for Markov chain Monte Carlo.
SIAM/ASA J Uncertain Quantif. 2020;8(3):1139-1188. doi: 10.1137/18M122964X. Epub 2020 Aug 24.
9
Long-Time-Scale Predictions from Short-Trajectory Data: A Benchmark Analysis of the Trp-Cage Miniprotein.
J Chem Theory Comput. 2021 May 11;17(5):2948-2963. doi: 10.1021/acs.jctc.0c00933. Epub 2021 Apr 28.
10
Insulin Dissociates by Diverse Mechanisms of Coupled Unfolding and Unbinding.
J Phys Chem B. 2020 Jul 9;124(27):5571-5587. doi: 10.1021/acs.jpcb.0c03521. Epub 2020 Jun 25.

本文引用的文献

1
Stratification as a general variance reduction method for Markov chain Monte Carlo.
SIAM/ASA J Uncertain Quantif. 2020;8(3):1139-1188. doi: 10.1137/18M122964X. Epub 2020 Aug 24.
2
Estimates and Standard Errors for Ratios of Normalizing Constants from Multiple Markov Chains via Regeneration.
J R Stat Soc Series B Stat Methodol. 2014 Sep;76(4):683-712. doi: 10.1111/rssb.12049. Epub 2013 Dec 9.
3
Intermediate Thermodynamic States Contribute Equally to Free Energy Convergence: A Demonstration with Replica Exchange.
J Chem Theory Comput. 2016 May 10;12(5):2154-61. doi: 10.1021/acs.jctc.6b00060. Epub 2016 Apr 21.
4
Using Multistate Reweighting to Rapidly and Efficiently Explore Molecular Simulation Parameters Space for Nonbonded Interactions.
J Chem Theory Comput. 2013 Nov 12;9(11):4700-17. doi: 10.1021/ct4005068. Epub 2013 Oct 17.
5
Free energies from dynamic weighted histogram analysis using unbiased Markov state model.
J Chem Theory Comput. 2015 Jan 13;11(1):276-85. doi: 10.1021/ct500719p. Epub 2014 Dec 23.
6
SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.
SIAM J Matrix Anal Appl. 2015;36(3):917-941. doi: 10.1137/140987900. Epub 2015 Jul 2.
8
9
Convergence and error estimation in free energy calculations using the weighted histogram analysis method.
J Comput Chem. 2012 Feb 5;33(4):453-65. doi: 10.1002/jcc.21989. Epub 2011 Nov 23.
10
Optimal estimators and asymptotic variances for nonequilibrium path-ensemble averages.
J Chem Phys. 2009 Oct 7;131(13):134110. doi: 10.1063/1.3242285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验