Suppr超能文献

使用神经网络和短轨迹数据预测罕见事件。

Predicting rare events using neural networks and short-trajectory data.

作者信息

Strahan John, Finkel Justin, Dinner Aaron R, Weare Jonathan

机构信息

Department of Chemistry and James Franck Institute, the University of Chicago, Chicago, IL 60637.

Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112152. Epub 2023 May 9.

Abstract

Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic dynamical systems. When the event is rare in comparison with the timescales of simulation and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct observations becomes challenging. In such cases a more effective approach is to cast statistics of interest as solutions to Feynman-Kac equations (partial differential equations). Here, we develop an approach to solve Feynman-Kac equations by training neural networks on short-trajectory data. Our approach is based on a Markov approximation but otherwise avoids assumptions about the underlying model and dynamics. This makes it applicable to treating complex computational models and observational data. We illustrate the advantages of our method using a low-dimensional model that facilitates visualization, and this analysis motivates an adaptive sampling strategy that allows on-the-fly identification of and addition of data to regions important for predicting the statistics of interest. Finally, we demonstrate that we can compute accurate statistics for a 75-dimensional model of sudden stratospheric warming. This system provides a stringent test bed for our method.

摘要

估计事件的可能性、发生时间和性质是对随机动力系统进行建模的主要目标。当与解析基本动力学所需的模拟和/或测量时间尺度相比,该事件较为罕见时,基于直接观测进行准确预测就变得具有挑战性。在这种情况下,一种更有效的方法是将感兴趣的统计量表示为费曼 - 卡茨方程(偏微分方程)的解。在此,我们开发了一种通过在短轨迹数据上训练神经网络来求解费曼 - 卡茨方程的方法。我们的方法基于马尔可夫近似,但避免了对基础模型和动力学的假设。这使得它适用于处理复杂的计算模型和观测数据。我们使用一个便于可视化的低维模型来说明我们方法的优势,并且该分析促使我们采用一种自适应采样策略,该策略允许即时识别对预测感兴趣的统计量重要的区域并向这些区域添加数据。最后,我们证明我们能够为平流层突然变暖的75维模型计算准确的统计量。该系统为我们的方法提供了一个严格的测试平台。

相似文献

1
Predicting rare events using neural networks and short-trajectory data.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112152. Epub 2023 May 9.
2
Feynman-Kac formula for stochastic hybrid systems.
Phys Rev E. 2017 Jan;95(1-1):012138. doi: 10.1103/PhysRevE.95.012138. Epub 2017 Jan 23.
3
Variational approach to rare event simulation using least-squares regression.
Chaos. 2019 Jun;29(6):063107. doi: 10.1063/1.5090271.
4
DeepCME: A deep learning framework for computing solution statistics of the chemical master equation.
PLoS Comput Biol. 2021 Dec 8;17(12):e1009623. doi: 10.1371/journal.pcbi.1009623. eCollection 2021 Dec.
5
Solving high-dimensional partial differential equations using deep learning.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8505-8510. doi: 10.1073/pnas.1718942115. Epub 2018 Aug 6.
6
Subdiffusion in the Presence of Reactive Boundaries: A Generalized Feynman-Kac Approach.
J Stat Phys. 2023;190(5):92. doi: 10.1007/s10955-023-03105-7. Epub 2023 Apr 27.
7
Multifidelity Analysis for Predicting Rare Events in Stochastic Computational Models of Complex Biological Systems.
Biomed Eng Comput Biol. 2018 Aug 3;9:1179597218790253. doi: 10.1177/1179597218790253. eCollection 2018.
10
Learning Interactions in Reaction Diffusion Equations by Neural Networks.
Entropy (Basel). 2023 Mar 11;25(3):489. doi: 10.3390/e25030489.

本文引用的文献

1
Augmented transition path theory for sequences of events.
J Chem Phys. 2022 Sep 7;157(9):094115. doi: 10.1063/5.0098587.
2
Transition rate theory, spectral analysis, and reactive paths.
J Chem Phys. 2022 Apr 7;156(13):134111. doi: 10.1063/5.0084209.
3
Kinetics of Phenol Escape from the Insulin R Hexamer.
J Phys Chem B. 2021 Oct 28;125(42):11637-11649. doi: 10.1021/acs.jpcb.1c06544. Epub 2021 Oct 14.
4
Stratification as a general variance reduction method for Markov chain Monte Carlo.
SIAM/ASA J Uncertain Quantif. 2020;8(3):1139-1188. doi: 10.1137/18M122964X. Epub 2020 Aug 24.
5
String Method with Swarms-of-Trajectories, Mean Drifts, Lag Time, and Committor.
J Phys Chem A. 2021 Sep 2;125(34):7558-7571. doi: 10.1021/acs.jpca.1c04110. Epub 2021 Aug 18.
6
Blind Analysis of Molecular Dynamics.
J Chem Theory Comput. 2021 May 11;17(5):2725-2736. doi: 10.1021/acs.jctc.0c01277. Epub 2021 Apr 29.
7
Long-Time-Scale Predictions from Short-Trajectory Data: A Benchmark Analysis of the Trp-Cage Miniprotein.
J Chem Theory Comput. 2021 May 11;17(5):2948-2963. doi: 10.1021/acs.jctc.0c00933. Epub 2021 Apr 28.
8
Physics-informed machine learning: case studies for weather and climate modelling.
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200093. doi: 10.1098/rsta.2020.0093. Epub 2021 Feb 15.
9
MPL resolves genetic linkage in fitness inference from complex evolutionary histories.
Nat Biotechnol. 2021 Apr;39(4):472-479. doi: 10.1038/s41587-020-0737-3. Epub 2020 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验