Suppr超能文献

死亡率和发病率峰值建模:极值理论方法。

Mortality and morbidity peaks modeling: An extreme value theory approach.

机构信息

1 Institut national de la recherche scientifique, centre ETE, Québec, Canada.

2 Département de médecine sociale et préventive, Université Laval, Québec, Canada.

出版信息

Stat Methods Med Res. 2018 May;27(5):1498-1512. doi: 10.1177/0962280216662494. Epub 2016 Sep 1.

Abstract

Hospitalizations and deaths belong to the most studied health variables in public health. Those variables are usually analyzed through mean events and trends, based on the whole dataset. However, this approach is not appropriate to comprehend health outcome peaks which are unusual events that strongly impact the health care network (e.g. overflow in hospital emergency rooms). Peaks can also be of interest in etiological research, for instance when analyzing relationships with extreme exposures (meteorological conditions, air pollution, social stress, etc.). Therefore, this paper aims at modeling health variables exclusively through the peaks, which is rarely done except over short periods. Establishing a rigorous and general methodology to identify peaks is another goal of this study. To this end, the extreme value theory appears adequate with statistical tools for selecting and modeling peaks. Selection and analysis for deaths and hospitalizations peaks using extreme value theory have not been applied in public health yet. Therefore, this study also has an exploratory goal. A declustering procedure is applied to the raw data in order to meet extreme value theory requirements. The application is done on hospitalization and death peaks for cardiovascular diseases, in the Montreal and Quebec metropolitan communities (Canada) for the period 1981-2011. The peak return levels are obtained from the modeling and can be useful in hospital management or planning future capacity needs for health care facilities, for example. This paper focuses on one class of diseases in two cities, but the methodology can be applied to any other health peaks series anywhere, as it is data driven.

摘要

住院和死亡属于公共卫生领域中研究最多的健康变量。这些变量通常通过均值事件和趋势进行分析,基于整个数据集。然而,这种方法并不适合理解健康结果峰值,这些峰值是不常见的事件,会对医疗保健网络产生强烈影响(例如,医院急诊室的溢出)。峰值在病因研究中也可能具有重要意义,例如,在分析与极端暴露(气象条件、空气污染、社会压力等)的关系时。因此,本文旨在专门通过峰值来建模健康变量,这种方法除了短期外很少使用。建立一种严格和通用的方法来识别峰值是本研究的另一个目标。为此,极值理论与用于选择和建模峰值的统计工具相结合是合适的。极值理论尚未在公共卫生领域中应用于死亡和住院峰值的选择和分析。因此,本研究也具有探索性目标。为了满足极值理论的要求,对原始数据进行了去簇处理。该应用是在 1981 年至 2011 年期间,针对加拿大蒙特利尔和魁北克大都市区的心血管疾病住院和死亡峰值进行的。通过建模获得的峰值回报水平可用于医院管理或规划未来医疗设施的容量需求等。本文重点关注两个城市的一类疾病,但该方法可以应用于任何其他地点的任何其他健康峰值系列,因为它是数据驱动的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验