Suppr超能文献

使用纳米多孔 Ag 阴极进行光电化学二氧化碳还原。

Photoelectrochemical Carbon Dioxide Reduction Using a Nanoporous Ag Cathode.

机构信息

Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19716, United States.

出版信息

ACS Appl Mater Interfaces. 2016 Sep 21;8(37):24652-8. doi: 10.1021/acsami.6b09095. Epub 2016 Sep 12.

Abstract

Solar fuel production from abundant sources using photoelectrochemical (PEC) systems is an attractive approach to address the challenges associated with the intermittence of solar energy. In comparison to electrochemical systems, PEC cells directly utilize solar energy as the energy input, and if necessary, then an additional external bias can be applied to drive the desired reaction. In this work, a PEC cell composing of a Ni-coated Si photoanode and a nanoporous Ag cathode was developed for CO2 conversion to CO. The thin Ni layer not only protected the Si wafer from photocorrosion but also served as the oxygen evolution catalyst. At an external bias of 2.0 V, the PEC cell delivered a current density of 10 mA cm(-2) with a CO Faradaic efficiency of ∼70%. More importantly, a stable performance up to 3 h was achieved under photoelectrolysis conditions, which is among the best literature-reported performances for PEC CO2 reduction cells. The photovoltage of the PEC cell was estimated to be ∼0.4 V, which corresponded to a 17% energy saving by solar energy utilization. Postreaction structural analysis showed the corrosion of the Ni layer at the Si photoanode/catalyst interface, which caused performance degradation under prolonged operations. A stable oxygen evolution catalyst with a robust interface is crucial to the long-term stability of PEC CO2 reduction cells.

摘要

利用光电化学(PEC)系统从丰富的资源中生产太阳能燃料是解决太阳能间歇性相关挑战的一种有吸引力的方法。与电化学系统相比,PEC 电池直接利用太阳能作为能量输入,如果需要,然后可以施加额外的外部偏压来驱动所需的反应。在这项工作中,开发了一种由 Ni 涂层 Si 光阳极和纳米多孔 Ag 阴极组成的 PEC 电池,用于将 CO2 转化为 CO。薄的 Ni 层不仅保护了 Si 晶片免受光腐蚀,而且还用作析氧催化剂。在 2.0 V 的外部偏压下,PEC 电池的电流密度为 10 mA cm(-2),CO 的法拉第效率约为 70%。更重要的是,在光电解条件下实现了长达 3 小时的稳定性能,这是 PEC CO2 还原电池中最好的文献报道性能之一。PEC 电池的光电压估计为 0.4 V,这相当于太阳能利用节省了 17%的能量。反应后结构分析表明,在 Si 光阳极/催化剂界面处的 Ni 层发生腐蚀,这导致在长时间操作下性能下降。具有稳健界面的稳定析氧催化剂对于 PEC CO2 还原电池的长期稳定性至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验