Cai Qian, Hong Wenting, Jian Chuanyong, Liu Wei
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
Nanoscale. 2020 Apr 14;12(14):7550-7556. doi: 10.1039/d0nr00921k. Epub 2020 Mar 30.
Silicon (Si) is an attractive photoanode material for photoelectrochemical (PEC) water splitting. However, Si photoanode towards the oxygen evolution reaction (OER) is highly challenged due to its poor stability and catalytic inactivity. The integration of highly active electrocatalysts with Si photoanodes has been considered to be an effective strategy to improve their OER performance by accelerating the reaction kinetics and inhibiting Si photocorrosion. In this work, ultra-small NiFe nanoparticles are deposited onto the n-Si/Ni/NiOOH surface to improve the activity and stability of Si photoanodes by engineering the electrocatalyst and Si interface. Ultra-small NiFe nanoparticles can introduce oxygen vacancies via modulating the local electronic structure of Ni hosts in NiOOH electrocatalysts for fast charge separation and transfer. Besides, NiFe nanoparticles can also serve as a co-catalyst exposing more active sites and as a protection layer preventing Si photocorrosion. The as-prepared n-Si/Ni/NiOOH/NiFe photoanode exhibits excellent OER activity with an onset potential of 1.0 V versus reversible hydrogen electrode (RHE) and a photocurrent density of ∼25.2 mA cm at 1.23 V versus RHE. This work provides a promising approach to design high-performance Si photoanodes by surface electrocatalyst engineering.
硅(Si)是用于光电化学(PEC)水分解的一种有吸引力的光阳极材料。然而,由于其稳定性差和催化活性低,硅光阳极在析氧反应(OER)方面面临巨大挑战。将高活性电催化剂与硅光阳极相结合被认为是一种通过加速反应动力学和抑制硅光腐蚀来提高其OER性能的有效策略。在这项工作中,通过设计电催化剂与硅的界面,将超小的镍铁纳米颗粒沉积到n-Si/Ni/NiOOH表面,以提高硅光阳极的活性和稳定性。超小的镍铁纳米颗粒可以通过调节NiOOH电催化剂中镍主体的局部电子结构来引入氧空位,从而实现快速的电荷分离和转移。此外,镍铁纳米颗粒还可以作为共催化剂,暴露出更多的活性位点,并作为防止硅光腐蚀的保护层。所制备的n-Si/Ni/NiOOH/NiFe光阳极表现出优异的OER活性,相对于可逆氢电极(RHE)的起始电位为1.0 V,在相对于RHE为1.23 V时的光电流密度约为25.2 mA/cm²。这项工作为通过表面电催化剂工程设计高性能硅光阳极提供了一种有前景的方法。