Suppr超能文献

来自食烷鞘氨醇杆菌B2菌株的CYP101J2、CYP101J3和CYP101J4,1,8-桉叶素羟化细胞色素P450单加氧酶

CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2.

作者信息

Unterweger Birgit, Bulach Dieter M, Scoble Judith, Midgley David J, Greenfield Paul, Lyras Dena, Johanesen Priscilla, Dumsday Geoffrey J

机构信息

Department of Microbiology, Monash University, Clayton, VIC, Australia Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia CSIRO Manufacturing, Clayton, VIC, Australia.

Department of Microbiology, Monash University, Clayton, VIC, Australia Victorian Life Sciences Computation Initiative, The University of Melbourne, Carlton, VIC, Australia.

出版信息

Appl Environ Microbiol. 2016 Oct 27;82(22):6507-6517. doi: 10.1128/AEM.02067-16. Print 2016 Nov 15.

Abstract

UNLABELLED

We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida Compared to P450 (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications.

IMPORTANCE

CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101 family. This could eventually provide enough bacterial parental enzymes with similar amino acid sequences to enable in vitro evolution via DNA shuffling.

摘要

未加标签

我们报告了三种新的细胞色素P450单加氧酶的分离和特性鉴定:CYP101J2、CYP101J3和CYP101J4。这些P450酶源自矢野氏鞘氨醇杆菌B2,该菌株是从活性污泥中分离出来的,因其能够完全矿化1,8-桉叶素。对该菌株进行基因组测序,并结合对天然1,8-桉叶素结合蛋白的纯化,从而鉴定出1,8-桉叶素结合P450酶。将这些P450酶进行克隆,在大肠杆菌BL21(DE3)中进行异源表达(N端带有His标签),纯化并进行光谱表征。在大肠杆菌中进行的重组全细胞生物转化表明,所有这三种P450酶利用大肠杆菌的电子传递伴侣使1,8-桉叶素羟基化,生成一种推定鉴定为(1S)-2α-羟基-1,8-桉叶素或(1R)-6α-羟基-1,8-桉叶素的产物。这些新的P450酶属于CYP101家族,与新鞘氨醇杆菌和恶臭假单胞菌中发现的其他1,8-桉叶素羟基化成员分别具有47%和44%的同源性。与来自布氏柠檬酸杆菌的1,8-桉叶素羟基化P450(CYP176A1)相比,这些酶的氨基酸序列同源性低于30%,并且以不同的方向使1,8-桉叶素羟基化。用于修饰1,8-桉叶素的酶工具箱的扩展为在一系列工业应用中使用羟基化衍生物创造了一个起点。

重要性

CYP101J2、CYP101J3和CYP101J4是来自矢野氏鞘氨醇杆菌B2的细胞色素P450单加氧酶,它们可使单萜类化合物1,8-桉叶素羟基化。这些酶不仅在这种植物源化学物质的微生物降解中起重要作用,而且为合成氧化的1,8-桉叶素衍生物提供了一条有趣的途径,这些衍生物可作为天然香料和香精前体或用于聚合物中。P450细胞色素还为比较其他具有相似功能的酶并扩展CYP101家族提供了一个有趣的基础。这最终可能提供足够数量的具有相似氨基酸序列的细菌亲本酶,以便通过DNA改组进行体外进化。

相似文献

1
CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2.
Appl Environ Microbiol. 2016 Oct 27;82(22):6507-6517. doi: 10.1128/AEM.02067-16. Print 2016 Nov 15.
2
X-ray crystal structure of cytochrome P450 monooxygenase CYP101J2 from Sphingobium yanoikuyae strain B2.
Proteins. 2017 May;85(5):945-950. doi: 10.1002/prot.25227. Epub 2017 Mar 3.
3
Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1.
World J Microbiol Biotechnol. 2016 Jul;32(7):112. doi: 10.1007/s11274-016-2071-y. Epub 2016 Jun 4.
4
Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization.
J Biol Chem. 2002 Aug 2;277(31):27725-32. doi: 10.1074/jbc.M203382200. Epub 2002 May 16.
5
Metabolism of 1,8-cineole by human cytochrome P450 enzymes: identification of a new hydroxylated metabolite.
Biochim Biophys Acta. 2005 Apr 15;1722(3):304-11. doi: 10.1016/j.bbagen.2004.12.019. Epub 2005 Jan 17.
7
Cytochrome P450cin (CYP176A1).
Adv Exp Med Biol. 2015;851:319-39. doi: 10.1007/978-3-319-16009-2_12.
8
A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans.
Appl Microbiol Biotechnol. 2010 Mar;86(1):163-75. doi: 10.1007/s00253-009-2234-y. Epub 2009 Sep 25.
10
Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
J Am Chem Soc. 2003 Jan 22;125(3):705-14. doi: 10.1021/ja028460a.

引用本文的文献

1
A Toolbox for Diverse Oxyfunctionalisation of Monoterpenes.
Sci Rep. 2018 Sep 26;8(1):14396. doi: 10.1038/s41598-018-32816-1.
2
Structural elucidation of a hy-droxy-cineole product obtained from cytochrome P450 monooxygenase CYP101J2 catalysed transformation of 1,8-cineole.
Acta Crystallogr E Crystallogr Commun. 2017 Jul 21;73(Pt 8):1242-1245. doi: 10.1107/S2056989017010015. eCollection 2017 Jul 1.

本文引用的文献

1
Roary: rapid large-scale prokaryote pan genome analysis.
Bioinformatics. 2015 Nov 15;31(22):3691-3. doi: 10.1093/bioinformatics/btv421. Epub 2015 Jul 20.
3
Recent advances in biocatalyst discovery, development and applications.
Bioorg Med Chem. 2014 Oct 15;22(20):5604-12. doi: 10.1016/j.bmc.2014.06.033. Epub 2014 Jun 25.
4
Prokka: rapid prokaryotic genome annotation.
Bioinformatics. 2014 Jul 15;30(14):2068-9. doi: 10.1093/bioinformatics/btu153. Epub 2014 Mar 18.
5
New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing.
Brief Bioinform. 2014 May;15(3):343-53. doi: 10.1093/bib/bbt067. Epub 2013 Sep 23.
6
Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities.
Appl Environ Microbiol. 2013 Jun;79(12):3724-33. doi: 10.1128/AEM.00518-13. Epub 2013 Apr 5.
7
Origins of P450 diversity.
Philos Trans R Soc Lond B Biol Sci. 2013 Jan 6;368(1612):20120428. doi: 10.1098/rstb.2012.0428. Print 2013 Feb 19.
8
Spectroscopic features of cytochrome P450 reaction intermediates.
Arch Biochem Biophys. 2011 Mar 1;507(1):26-35. doi: 10.1016/j.abb.2010.12.008. Epub 2010 Dec 16.
9
The cytochrome p450 homepage.
Hum Genomics. 2009 Oct;4(1):59-65. doi: 10.1186/1479-7364-4-1-59.
10
A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans.
Appl Microbiol Biotechnol. 2010 Mar;86(1):163-75. doi: 10.1007/s00253-009-2234-y. Epub 2009 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验