Suppr超能文献

一种跨自动化模式转换的操作员视觉注意力、态势感知和绩效的闭环模型。

A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions.

作者信息

Johnson Aaron W, Duda Kevin R, Sheridan Thomas B, Oman Charles M

机构信息

Massachusetts Institute of Technology, Cambridge.

Charles Stark Draper Laboratory, Cambridge, Massachusetts.

出版信息

Hum Factors. 2017 Mar;59(2):229-241. doi: 10.1177/0018720816665759. Epub 2016 Sep 27.

Abstract

OBJECTIVE

This article describes a closed-loop, integrated human-vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment.

BACKGROUND

Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator's estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness.

METHOD

We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator's estimates of system states.

RESULTS

The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model's predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data.

CONCLUSION

Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates.

APPLICATION

Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator's visual attention during control mode transitions can produce reallocations in situation awareness of certain states.

摘要

目的

本文描述了一种闭环、集成的人-车模型,旨在帮助理解在模拟的人在回路月球着陆实验中,控制模式转换过程中影响受试者视觉注意力、心理负荷和态势感知变化的潜在认知过程。

背景

从自动驾驶模式转换到手动飞行模式可能会导致总的注意力需求超过操作员的能力。注意力资源必须重新分配并重新确定优先级,这可能会增加操作员对低优先级系统状态估计的平均不确定性。我们将这种不确定性的增加定义为态势感知的降低。

方法

我们提出了一个基于状态估计的最优控制模型、手动控制的交叉模型以及视觉注意力的SEEV(显著性、努力程度、期望、价值)模型构建的模型。我们对SEEV注意力执行器进行了修改,以部分基于操作员对系统状态估计的不确定性来引导视觉注意力。

结果

该模型使用模拟月球着陆实验数据进行了验证,结果表明所有模拟器仪器的注意力百分比平均差异≤3.6%。该模型通过任务绩效和系统状态不确定性来衡量的心理负荷和态势感知预测,也与实验数据相符。

结论

我们的模型支持视觉注意力受系统状态估计不确定性影响这一假设。

应用

围绕系统状态不确定性指标来概念化态势感知,是系统设计师理解和预测在控制模式转换期间操作员视觉注意力的重新分配如何导致某些状态的态势感知重新分配的一种有价值的方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验