Suppr超能文献

层次化的长期记忆重建:啮齿类动物记忆研究中海马遗忘的一个概念。

Heterarchic reinstatement of long-term memory: A concept on hippocampal amnesia in rodent memory research.

机构信息

Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada; University of Lethbridge 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada.

Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada; University of Lethbridge 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada.

出版信息

Neurosci Biobehav Rev. 2016 Dec;71:154-166. doi: 10.1016/j.neubiorev.2016.08.034. Epub 2016 Aug 31.

Abstract

Evidence from clinical and animal research highlights the role of the hippocampus in long-term memory (LTM). Decades of experimental work have produced numerous theoretical accounts of the hippocampus in LTM, and each suggests that hippocampal disruption produces amnesia for specific categories of memory. These accounts also imply that hippocampal disruption before or soon after a learning episode should have equivalent amnestic effects. Recent evidence from lesion and inactivation experiments in rodents illustrates that hippocampal disruption after a learning episode causes memory impairment in a wider range of memory tasks than if the same disruption occurs before learning. Although this finding supports that multiple circuits can acquire and retrieve similar information, it also suggests they do not do so independently. In addition, damage after learning produces amnesia for simple elements of a task as well as complex, conjunctive features. Here we develop an explanation for why anterograde and retrograde hippocampal effects differ. This explanation, the heterarchic reinstatement view, also generates novel predictions.

摘要

临床和动物研究的证据强调了海马体在长期记忆 (LTM) 中的作用。数十年来的实验工作产生了许多关于海马体在 LTM 中的理论解释,每个解释都表明海马体的破坏会导致特定类别的记忆丧失。这些解释还表明,在学习事件之前或之后不久发生的海马体破坏应该具有等效的遗忘效应。最近在啮齿动物的损伤和失活实验中的证据表明,与在学习之前发生相同的破坏相比,在学习事件之后发生的海马体破坏会导致更广泛的记忆任务中的记忆损伤。尽管这一发现支持多个电路可以获取和检索相似的信息,但它也表明它们并非独立进行。此外,学习后的损伤会导致任务的简单元素以及复杂的、联合特征的遗忘。在这里,我们提出了一个解释为什么顺行和逆行海马体效应不同的解释。这种解释,即异质重新激活视图,也产生了新的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验