Suppr超能文献

通过重量法对整株植物蒸腾作用对大气蒸汽压亏缺的响应进行表型分析,可确定水分利用效率的基因型变异。

Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

作者信息

Ryan Annette C, Dodd Ian C, Rothwell Shane A, Jones Ros, Tardieu Francois, Draye Xavier, Davies William J

机构信息

Lancaster Environment Centre, Lancaster University, UK.

Lancaster Environment Centre, Lancaster University, UK.

出版信息

Plant Sci. 2016 Oct;251:101-109. doi: 10.1016/j.plantsci.2016.05.018. Epub 2016 May 28.

Abstract

There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE.

摘要

人们对快速鉴定具有更高水分利用效率的基因型越来越感兴趣,以自动测量植物生长和水分利用的全株表型分析平台的发展为例。在100个玉米(Zea mays L.)基因型中测量了对大气蒸汽压亏缺(VPD)的蒸腾响应和全株水分利用效率(WUE,定义为单位用水量下地上生物量的积累)。使用基于温室的表型分析平台,该平台的VPD自然变化(1.5 - 3.8kPa),在充分浇水的植物中发现WUE有2倍的变化。在这些条件下对蒸腾与VPD进行回归分析,以及随后在施加的VPD(0.8 - 3.4kPa)下进行全株气体交换,结果表明特定基因型的响应相同。蒸腾与VPD的基因型响应分为两类:1)蒸腾速率随VPD呈线性增加,在所有VPD下蒸腾速率低(高WUE)或高(低WUE);2)非线性响应,在低VPD(高WUE)或高VPD(低WUE)处有明显的变化点。在后一组中,与低WUE基因型相比,高WUE基因型在蒸腾受到限制之前需要显著更低的VPD,并且在此之后对VPD的蒸腾速率显著更低。变化点值与气孔对VPD的敏感性显著正相关。气孔对VPD响应的变化点可能解释了为什么一些基因型根据是在温室还是田间条件下测量会显示出相互矛盾的WUE排名。此外,这种高通量表型分析平台的新应用成功再现了在全株室中测量的个体的气体交换响应,加速了高WUE植物的鉴定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验