State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an, 710072, China.
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.
Small. 2016 Nov;12(41):5692-5701. doi: 10.1002/smll.201602122. Epub 2016 Sep 4.
MoS shows promising applications in photocatalytic water splitting, owing to its uniquely optical and electric properties. However, the insufficient light absorption and lack of performance stability are two crucial issues for efficient application of MoS nanomaterials. Here, Au nanoparticles (NPs)@MoS sub-micrometer sphere-ZnO nanorod (Au NPs@MoS -ZnO) hybrid photocatalysts have been successfully synthesized by a facile process combining the hydrothermal method and seed-growth method. Such photocatalysts exhibit high efficiency and excellent stability for hydrogen production via multiple optical-electrical effects. The introduction of Au NPs to MoS sub-micrometer spheres forming a core-shell structure demonstrates strong plasmonic absorption enhancement and facilitates exciton separation. The incorporation of ZnO nanorods to the Au NPs@MoS hybrids further extends the light absorption to a broader wavelength region and enhances the exciton dissociation. In addition, mutual contacts between Au NPs (or ZnO nanorods) and the MoS spheres effectively protect the MoS nanosheets from peeling off from the spheres. More importantly, efficiently multiple exciton separations help to restrain the MoS nanomaterials from photocorrosion. As a result, the Au@MoS -ZnO hybrid structures exhibit an excellent hydrogen gas evolution (3737.4 μmol g ) with improved stability (91.9% of activity remaining) after a long-time test (32 h), which is one of the highest photocatalytic activities to date among the MoS based photocatalysts.
二硫化钼由于其独特的光学和电学性质,在光催化水分解中显示出很有前景的应用。然而,对于 MoS 纳米材料的有效应用,其不足的光吸收和缺乏性能稳定性是两个关键问题。在这里,通过将水热法和种子生长法相结合的简便工艺,成功合成了金纳米粒子(NPs)@MoS 亚微米球-ZnO 纳米棒(Au NPs@MoS-ZnO)杂化光催化剂。通过多种光电效应,这种光催化剂在制氢方面表现出高效和优异的稳定性。Au NPs 的引入到 MoS 亚微米球中形成核壳结构,证明了强等离子体吸收增强,并促进了激子分离。将 ZnO 纳米棒掺入到 Au NPs@MoS 杂化物中进一步将光吸收扩展到更宽的波长范围,并增强了激子离解。此外,Au NPs(或 ZnO 纳米棒)和 MoS 球体之间的相互接触有效地防止了 MoS 纳米片从球体上剥落。更重要的是,高效的多激子分离有助于抑制 MoS 纳米材料的光腐蚀。结果,Au@MoS-ZnO 杂化结构表现出优异的氢气产生(3737.4 μmol g),并具有较高的稳定性(32 h 后活性保留率为 91.9%),这是迄今为止基于 MoS 的光催化剂中最高的光催化活性之一。