Suppr超能文献

夹心型 ZnO@Au@CdS 纳米棒阵列,可见光驱动光催化性能增强。

Sandwiched ZnO@Au@CdS nanorod arrays with enhanced visible-light-driven photocatalytical performance.

机构信息

Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, People's Republic of China.

出版信息

Nanotechnology. 2017 Nov 17;28(46):465403. doi: 10.1088/1361-6528/aa8d43.

Abstract

The development of high-performance photocatalysts is central to efforts focused on taking advantage of solar energy to overcome environmental and energy crises. Integrating different functional materials artfully into nanostructures can deliver more efficient photocatalytic activity. Here, sandwiched ZnO@Au@CdS nanorod films were synthesized via successive ZnO nanorod electrodeposition, Au sputtering and CdS electrodeposition. The as-synthesized composites were characterized by UV-vis spectrophotometer, x-ray diffractometer, scanning and transmission electron microscopy. Their photocatalytic activity was assessed by degrading Rhodamine B solution under visible light irradiation. ZnO@Au@CdS exhibited better photocatalytic performance than ZnO@CdS throughout the visible light region, and the corresponding enhancement factor of Au nanoparticles was measured as a function of CdS loading amount, and it could reach 190% with CdS deposition for 1 min. The normalized rate constant could reach 0.387 h for ZnO@Au@CdS-1min, which was equivalent to or better than results in reference photocatalysts. The enhancement mechanism of Au nanoparticles was estimated by comparing the monochromatic photocatalytic action spectra with the absorption spectrum of ZnO@Au@CdS, and it was mainly determined by incident photon energy. With selective excitation of Au nanoparticles by incident photons, the excited hot electrons in Au NPs are transferred to the conduction band of ZnO to boost photocatalytic reaction. With selective excitation of CdS, the enhanced interband absorption of CdS and relay station effect of Au nanoparticles should be responsible for the enhanced photocatalytic performance. Our work not only opens the door to the design of efficient supported photocatalysts, but also helps to understand the enhancement mechanism of LSPR effect on the photoelectric conversion of semiconductors.

摘要

开发高性能光催化剂是利用太阳能克服环境和能源危机的核心。巧妙地将不同功能材料整合到纳米结构中可以提供更高效的光催化活性。在这里,通过连续的 ZnO 纳米棒电沉积、Au 溅射和 CdS 电沉积,合成了夹心 ZnO@Au@CdS 纳米棒薄膜。所合成的复合材料通过紫外可见分光光度计、X 射线衍射仪、扫描和透射电子显微镜进行了表征。通过在可见光照射下降解罗丹明 B 溶液来评估它们的光催化活性。在整个可见光区域,ZnO@Au@CdS 表现出比 ZnO@CdS 更好的光催化性能,并且 Au 纳米粒子的相应增强因子作为 CdS 负载量的函数进行了测量,当 CdS 沉积 1 分钟时,其可以达到 190%。对于 ZnO@Au@CdS-1min,归一化速率常数可以达到 0.387 h,与参考光催化剂的结果相当或更好。通过比较单色谱光催化作用光谱与 ZnO@Au@CdS 的吸收光谱,估计了 Au 纳米粒子的增强机制,主要取决于入射光子能量。通过入射光子选择性激发 Au 纳米粒子,在 Au NPs 中激发的热电子被转移到 ZnO 的导带,从而促进光催化反应。通过 CdS 的选择性激发,应该归因于 CdS 的增强的带间吸收和 Au 纳米粒子的中继站效应,从而增强了光催化性能。我们的工作不仅为高效负载型光催化剂的设计开辟了道路,而且有助于理解 LSPR 效应对半导体光电转换的增强机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验