Czarnek Maria, Bereta Joanna
Zakład Biochemii Komórki, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński w Krakowie*
Zakład Biochemii Komórki, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński w Krakowie.
Postepy Hig Med Dosw (Online). 2016 Sep 1;70(0):901-16. doi: 10.5604/17322693.1216379.
Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.
精确而高效的基因组修饰在理解特定基因和其他遗传元件在生物过程以及各种病理状态中的作用方面具有巨大价值。近年来,一种称为基因组编辑的新型基因组修饰方法开始应用,该方法利用所谓的“可编程”核酸酶。CRISPR-Cas(成簇规律间隔短回文重复序列- CRISPR相关)系统的引入给基因组编辑带来了一场真正的革命,其中一种这样的核酸酶即Cas9发挥着主要作用。该系统基于细菌和古细菌针对噬菌体感染和外来遗传物质转移的获得性免疫机制的元件。微生物将外来DNA片段整合到其基因组中存在的CRISPR位点,这使得能够快速识别和消除未来的感染。原核生物中有几种类型的CRISPR-Cas系统,但只有II型CRISPR的元件用于基因组工程。II型CRISPR-Cas利用小RNA分子(crRNA和tracrRNA)将效应核酸酶Cas9精确引导至基因组中的特定位点,即与crRNA互补的序列。Cas9可用于:(i)在基因组中引入稳定变化,例如在生成基因敲除和基因敲入动物及细胞系的过程中;(ii)激活或沉默感兴趣基因的表达;以及(iii)可视化活细胞基因组中的特定位点。基于CRISPR-Cas的工具已成功用于生成多种疾病的动物和细胞模型,例如特定类型的癌症。未来,可编程核酸酶介导的基因组编辑可能会在医学中得到广泛应用,例如在某些遗传性疾病的治疗以及HIV感染患者的治疗中。